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SUMMARY

This research seeks to provide a modern manipulator control strategy for
tracking a desired trajectory over a wide range of flexible manipulator motion and
payload variations. Due to the presence of nonlinearities, uncertainty, and link flex-
ibility in the dynamic model, “Adaptive Control” is proposed to meet these goals.
The signal-synthesis adaptation implemented here results in a robust stability design
which reduces the burden of on-line computation and satisfies the characteristics of

flexibility.

A recursive dynamic model has been derived by the Lagrange-Euler formula
with the assumed mode method and the measurements form the output matrix.
The finite element method is used here to predict system vibrations and assumed
mode shapes. The adaptive controller design is based on asymptotical stability via
the Lyapunov criterion, while the output error between the system and the reference
model is used as the actuating control signal. Computer simulations were carried
out to test the design. The combination of the adaptive controller and estimator
show that the flexible arm should move along a pre-defined trajectory with high-

speed motion and fast vibration setting time.

A computer-controlled prototype two link manipulator, RALF (Robotic Arm,
Large Flexible), with a parallel mechanism driven by hydraulic actuators exists in
the Flexible Automation Laboratory at Georgia Tech. Experiments on RALF were
performed to verify the mathematical analysis. The experimental results illustrate

that assumed modes found from finite element techniques can be used to derive



xiv
the equations of motion with acceptable accuracy. The robust adaptive (modal)
control is implemented to compensate for unmodelled modes and nonlinearities and

is compared with the joint feedback control in additional experiments. Preliminary

results show promise for the experimental control algorithm.
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CHAPTER 1
INTRODUCTION

The need to improve industrial productivity has over the years greatly moti-
vated the implementation of a variety of forms of automation. Programmable mul-
tifunctional manipulators, or industrial robots, have become increasingly important
in this respect. Robot control is one factor which can improve robot performance
by improving robot motion. |

One of the major drawbacks of today’s robots is that they offer slow response
since the robot motion speed is severely limited by the weight of the manipulator
arm. The excessive arm weight not only hampers the rapid motion and workspace
range of the manipulator arm, but also increases the robot’s consumption of energy

and the size of the required actuators.

1.1 Motivation
The reduction of component structural weight has been proposed as one way to
reduce the cost of industrial manipulators while improving high speed performance.
In exchange for a light-weight arm, one must accept an increase in system flexibil-
ity along with the associated difficulty in accurately controlling a flexible structure.
Increased manipulator p.erfrorman;,e rerquires a controller which allows for both non-
linear link dynamics and link flexibility. It is to establish methods of controlling

such light-weight arms that this research has been initiated.

1.2 Why Advanced Control?

The primary existing schemes of control do not satisfactorily treat both non-
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linear dynamics and flexibility, although many suggested schemes satisfy one or the
other of these needs. In some reéearch, linear quadratic control design is used to
stabilize the flexibility in a large scale structure and nonlinear feedback is used to
decouple coupling terms in the nonlinear syst;:in. A new adaptive control strategy
is introduced here to solve the problems addressed above and to improve the system
performance. Adaptive control is a simple type of nonlinear feedback control, when
there is not a scheme to control the whole nonlinear system globally.
The reaséns for implementing an adaptive strategy here for position control of
flexible arms is that it can: -
1. eliminate the steady-state error in responses,
2. compens#te for the unmodelled modes when the dynamic model adopted is
close to the real one,
3. decouple the nonlinear terms in some respects,
4. be insensitive to the variation of the payload,
5. eliminate the effect of structure disturbances and uncertainties of system pa-
rameters al;mg the working paths,

~ 6. reduce on-line computation and be implemented simply.

1.3 Background

. 131 VHAiisitqry;anrd Conc¢ptﬂof Aldap_tive Control

The term: and the concept of adaptive control were introduced in the 1950’s

- when the complexity of aircraft led to the need for a more effective control system

for plants whose parameters may vary over a wide range.
A system is adaptive if it makes use of the information on either external
actions, dynamic characteristics of the plant, or its control system, obtained in

the course of operation, to change the structure or the gains of the controller as
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necessary to achieve the required properties of the closed-loop system.

The schemes of adaptive control are classified into three classes: gain schedul-
ing, model reference control, and the self-tuning regulator [Astrom,1983,1989].

1. Gain Scheduling - The controller is automatically tuned at a number of op-
erating points. The resulting control laws are then stored away for subsequent use
whenever the corresponding operating condition is indicated by auxiliary measure-
ment (Fig. 1.1) [Goodwin and Sin 1984]. The transition between different operating
conditions will happen when the scheduling variables change along with the vari-
ation of auxiliary measurements. Many applications have been found [Kallstrom,
Astrom, Thorell, Erisksson and Stein 1979)].

However, there exist two major drawbacks of this scheme. One is that gain
scheduling is an open-loop compensation, or can be viewed as a feedback control
system where the feedback gains are adjusted by feedforward compensation. The
other is that the design is time-consuming.

2. Se_lf-tuning - This is one approac-h to the automatic tuning problem. It can
be viewed either as a tuning aid for control laws that are more complex than PID
but which have fixed parameters, or as a means by which a time-varying process
can be controlled in a consistent way (Fig. 1.2) [Clarke, Gawthrop 1981].

The adaptive regulator can be thought of as composed of two loops. The
inner loop cqnsists of the process and an ordinary linear feedback regulator. The
parameters of the regulator are adjuvsted bryrthre oﬁter loop, which is composréd of
a recursive parameter estimator and a design calculation [Astrom and Wittenmark
1987].

Self-tuning was originally proposed by Kalman [1955], who built a special-
purpose computer to implement the regulator. Later, the theory was revived and

extended to cover stochastic aspects by Peteka [1970], but it was not until the
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key paper of Astrom and Wittenmark [1973] that the current great interest in the
subject was initiated. One disadvantage is the difficulty of application to the MIMO
(multi-input, multi-output) case.

3. MRAC (Model Reference Adaptive Control) - This was one of the methods
originally sruigg;s'fed for the servo problem by Whitskew, Yamron and Kezer [1958].
Further work was performed by Parks [1966] on methods using a Lyapunov func-
tion. Hang and P&ks [1973], Monopoli [1973], and Landau [1974] also continuously
worked in this area.

The reference model is introduced as a part of the MRAC system shown in
Fig. 1.3. The whole system is described in two loops. The inner loop is an ordinary
feedback loop composed of the process and the regulator. The parameters of the
regulafor are adjusted by the outer loop in such a way that the error e between
the process Qutput y and the inb&el output y,, become small. The key problem is
to determine the adjustment mechanism so that a stable system which brings the

error to zero is obtained.

~ 13.2 Adaptive Control of Robot Motion

7 ”The MRA;é Wapproach was ongu;ally impleménted bs; Dugowsky and Desforges
[1979] on robot control. A hnear,u}légui)led, constant para.rrxilrertrerrw;éfiéli'éincé model
was selected for each degree of freedom of the robot arm. For the development of the
control algorithm, the coupling of the system was neglected and nonlinear manipu-
lator dynamics were simplified such that the system dynamics were described in a
linear second order differential equation for each individual degree of freedom. The
position and velocity feedback with adjustable gains were assumed to control the

robot motion. This was based on an adaptive scheme of steepest descent (Gradient

Search Technique) [Donalsun and Leondes 1963] which minimized the quadratic
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error between the outputs of the plant and the model by commanding a time rate
of change of the feedback gains. However, global stability of this simplified adap-
tive controller is not al-ways guaranteed. The experimental results [Dubowsky and
Kornbluh 1985] were presented with PD and PID feedforward compensation. PID
control is applied as if joints were decoupled to reduce the steady-state error.

Another simple MRAC developed by Takegaki and Arimoto [1981] was applied
in the task-oriented coordinate control of a manipulator when the target trajectory
was planned and expressed in the task-oriented coordinate space. It was assumed
that the effect of gravity could be compensated and the second and higher-order
terms were neglected in the dynamic system. The perturbed variables method was
introduced to get the linear equation around the nominal points. The control system
needed to complete two jobs. First, the adjustable laws were designed by stability
analysis with a Lyapunov function without an explicit reference model. Second,
the feedforward controller drives the system to the set point and compensated any
unknown di’sturbance.

Horowitz and Tomizuka [1980] proposed an application of an MRAC scheme
to adaptively compensate the nonlinearities and decouple the joint motions. The
adaptively model parameters can be estimated by applying hyperstability theory
Landau 1979] so that the computed torque input can cancel the nonlinear terms
and accomplish the decoupling by the feedforward method. Due to the constant
gains chosen which ensure adaptive system stability, the reference model can simply
be a double integrator. As a result, the simple fixed PID type controller closes the
loop.

The robot dynamic equation may be viewed as a class of nonlinear and time
varying systems. When applying hyperstability theory, Balestrino et.al. proposed
a MRAC based on Adaptive Model-following Control [1982] which is a signal syn-



thesis adaptation. In comparison with the control law in the Lyapunov design, the
gain matrices are divided into an adjustable and a fixed part. The adaptation mech-
anism-in the adjustable part makes the system asymptotically stable in the large
if the perfect model following conditions are met [Erzberger 1968] and the linear
comp'ensatérr [:Anderson 1967] and the adaptation matrices are properly chosen.

Although the Lyapunov design presented above guarantees asymptotical sta-
and oscillations may occur in the transient time. To deal with this difficulty and to
improve the speed of convergence, an auxiliary input can be introduced [Lim and
Eslami 1986]. =

It has been proven that the robotic system with PD feedback is stable [Asada
and Slotine 1986]. The computed-torque method is a common approach in robotic
control research. Therefore, this allows us to construct a MRAC scheme that makes
full use of known parameters and only adjusts the estimates of the unknown pa-
rameters [Craig 1987] [Slotine 1987].

If the dynamic equation of a manipulator is represented by a discrete-time
model, system identification techniques can be applied to sample input-output data.
This results in a self-tuning design of robot control using the discrete-time dynamic
equation found in most modern controllers [Hsia 1986].

Two major alternatives exist: 1. If the corresponding model of the plant is
known, the controller is designed to achieve the control goal. 2. If the parameters
of the system can be estimated on-line, then the controller is adjusted along with the
estimated parameters. When applying self-tuning methods for simplicity of design,
the model of the robot is usually chosen as a linear and slowly time-varying plant

such that the parameter estimation problem can be solved by the popular recursive

algorithms [Astrom and Wittenmark 1989] [Goodwin and Sin 1984] [Ljung 1977)].
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Koivo and Guo [1983] have considered a performance criterion which gives a
simple control law to minimize the error between the outputs of the system and
reference model. Moreover, if the nominal control input can be computed from
the given desired state trajectory, the robot states along this nominal point can
be represented in a linear perturbation form. A self-tuning design based on this
linear perturbation discrete model has been investigated by Lee and Chung [1982,
1984]. However, this design heavily depends on the computational speed in real-time

control.

1.3.3 Control of Flexible Systems

In recent years, many algorithms have proposed to control distributed parame-
ter systems [Takahashi 1972] which would include flexible structures also undergoing
rigid body motion. However, applications of those works mostly appear in the field
of the large scale structures of aerospace. A primary example [Andeen 1964] which
was the stabilization of flexible vehicles by considering the rigid-body and elastic-
mode responses independently.

For modal control of distributed systems with distributed feedback, Gould and
Murray-Lasso [1966] presented a linear operator acting on functions of time and
distance separately. To implement the control system, it was assumed that the
distance dependent part of the output and forcing functions had a finite number of
eigenfunctions. Classical techniques are applied to synthesize the feedback control
system. Therefore, a solution to the problem of controlling a class of linear, time
invariant, distributed parameter system was established.

Vaughan [1968], who applied wave propagation concepts to the control of bend-
ing vibrations, was interested in determining impedance matrices for passive end-

point attachment. This resulted in the method of transfer matrices for analyzing
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the distributed parameter system. Book [1974] used this method to approach the

flexible manipulator arm problem.

Distributed and lumped parameter models of various arm components were ‘

combined via transfer matrices to represent the complete arm model and numerical
techniques were used to derive frequency domain information by Book [1974]. These
results were mterpreted to indicate the limitations which the flexibility of a given
arm design imposed on the feedback gains of the joint control assumed. Maizza-
Neto [1974] used assumed modes and the Langrangian formulation of the dynamic
system to perform time domain analysis of flexible arms. To control a linearized
model in state space form, one could propose linear feedback of the flexible system

state variables, if all state variables were measurable. Furthermore, three types of

hnear feedback schemes, Jomt angle and velocxty fcedback with and without cross

Jomt feedba.ckr,e.pdjeedbeck of flexible state vanables, were proposed to show some
results for the rn:ktc;cilelef{Book 1975]. |
Balas {1978] developed a feedback controller for a finite number of modes of
a flexible system.. The controlla,bﬂlty and observability conditions of the system
necessary for successful operat:on were displayed. The control and observation
spillover due to the residual (uncontrolled) modes were examined and the combined
| eﬁ'ect of control and observatlon spillover was shown to lead to potential instabilities
in the closed loop system Those results were useful in designing the adaptive
7 control of large scale systems.

Book M;Jietiteiand Ma [1979 1981] continued to develop transfer matrix tech-
niques for the frequency domain analysis of the flexible arms. However, the con-
troller de51gn was via combined state space and frequency domam techniques [Book
and Majette 1983].

Canon and Schmitz [1984] discussed charactistics of a very flexible manipulator

{

]

g W @i g Nl

L

aur  wir o e o)

i

g 1

1 t ¢




i

L

m
i
A

LIS S U]

Ml

’..\

9

with an open truss construction. The end-point position was measured by an optical
sensor external to the manipulator system. An LQG approach was used to design
the feedback controller.

A truncated modal series was used for modelling and control of flexible manip-
ulator arms by Truckenbrodt [1981]. Linear equations were derived from a lineariza-
tion with respect to a prescribed reference motion or reference position. Unfortu-
nately, the control algorithm is incompletely described. Usoro, Nadira and Mabhil
[1984] proposed the concept of linear quadratic control with a prescribed degree of
stability to linearized versions of a flexible manipulator nonlinear model.

Sangveraphunsiri [1984] applied optimal control methods to obtain controller
design fbr a single link arm. Stochastic and deterministic steady-state regulators
were simqléted with a linear model and the Bang-Bang controller was implemented
to solve minimum time position control problems. Hastings [1986] verified the
regular results through experiments.

An approach based on singular perturbation control theory [Saksena] [Koko-
tovic 1984] was investigated on flexible manipulator control [Siciliano and Book].
The rigid body motion constitutes the slow subsystem, for which ordinary tracking
control can be synthesized, while the flexible motion plays the role of the fast sub-
system, which must be stabilized around the rigid body path. For a flexible beam
treated with a constrained viscoelastic layer damping treatment, the dynamics was
derived as a modified beam equation [Albertsj. Adding damping moves the po.les to
the left in the complex plane and thus improves the stability of the system. Control

of gross and fine motions of flexible manipulators was studied by Centinkunt [1987].

1.4 Problem Statements

A flexible manipulator arm moves in the operating space. The joint actuactors,
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which are the only control actuation, are used to track the predefined path. The
link rotates around the joint which is the location of the actuator so that oscillations
occur along with the link. The measurements of joint position and velocity and link
strain form the output matrix.

Due to its mass and flexibility, the distributed parameter nature of the link
has to be taken into consideration. Upon applying the control law, the end effector
position and vibration modes of the system need to be adequately controlled. A
main goal of this work is to control the flexible arm to move along a predefined joint
trajectory with high-speed and fast vibration-setting time. B

The a,gpgié,cy of the V(ijstljibuted” parameter Nmrorcilje;l is essential to éuccess in
achieving accurate control. However, unpredicted disturbances, e.g. Coulomb and
viscous friction of the joint, measurement noise and saturation of the actuators,
are considered as uncertainties in the dynamics such that the feedback system can
be demonstratea to be robust. Experiments with a computer-controlled prototype
of a two-link, non-serial, hydraulically driven manipulator, RALF (Robotic Arm,
Large and Flexible), in the Flexible Automation Laboratory at Georgia Tech are

performed to verify the applicability of the mathematical analysis.

1.5 Approach

To establish a successful feedback control for a mechanical system, dynamic

" rﬁéaelling is a.n 1mportant ;ﬁaii:;rre'qruisite. AAnr a;i)pl;{:)'ar.rcfhi based* on Lagrarmrgé';Eiﬂé'r is
used in developing the governing dynamic equations for the large and flexible ma-
nipulator. The position of every point along each link is described by a vector
combination of flexible deflections. The deflection is treated as a finite series of
separable modes which are products of admissible functions and time-dependent

generalized coordinates. The finite element method is used to find the admissi-
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ble functions since the link is not homogeneous and the boundary conditions are
complicated. Due to the recursive description of link position and velocity, the
manipulator dynamics is derived efficiently.

Before applying the control algorithm, some basic control properties need to
be verified for flexible manipulator dynamics. In this case, the number of degrees
of freedom of the system is much higher than the number of the input variables,
whereas for rigid manipulators every degree of freedom has a corresponding input
variable. Measurements are also limited, representing only some state variables, not
all.

The next step is to provide a modern control strategy for tracking a desired
path with fast vibration-setting time over a wide range of flexible manipulator mo-
tions and payload variations. In order to reduce the burden of on-line computation
and satisfy the characteristics of the flexibility, signal-synthesis adaptation is imple-
mented here to produce a robustly stable design via the Lyapunov criterion. Each
link can be considered as a subsystem of the overall system so that a decentral-
ization technique can be utilized to simplify the control structure. The system is,
therefore, stabilized by local state feedback, while the interconnection terms be-
tween subsystems are considered as one of the uncertainties in the system and are
bounded.

Computer simulations are carried out to test the design. The experimental
results illustrate that assumed modes found from finite element methods can be
used to find improved mode shapes. Adaptive strategies for control of flexible
manipulators are used to compensate unmodeled modes and nonlinearities. They

are compared with the conventional joint feedback control in experiments.
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Figure 1.1 Block diagram of gain scheduling adaptive control.
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Figure 1.2 Block diagram of self-tuning control.
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CHAPTER II
DYNAMIC MODELING
Much work has been done in the formulation of the dynamic equations of
motion for mechanical manipulators with flexible links. This section describes the
velocity of a point on a link as a linear combination of rigid body motion and
vibratory modes for flexible motion in order to form the kinetic energy. Due to the
distributed character of the flexible links, the total potential energy includes the
gravity as well as strain energy. The total potential and kinetic energy is taken into

account by integrating over the entire system. Therefore, the differential equations

of motion can be formed through Lagrange’s equation.

2.1 Flexible Arm Kinematics

A tobot positioning task is naturally specified in Cartesian coordinates by a
position vector P and a matrix of direction cosines R. Thus, the position of an
arbitrary point attached to the rigid body can be represented as a 4 x 4 matrix A

in the fixed coordinate system as shown in Figure 2.1.

Az[ff ﬂ . (2.1)

In other words, the matrix 4 is a transformation between two coordinate systems.

In the case of flexible arms, a point along the beam can be described in a fixed
reference coordinate system by two transformations (4; and E;) between the coor-
dinate systems (Figure 2.2) [Book, 1984]. The transformation (4;) relates system
i', the point before deflection, to system : —1. The transformation E; relates system

i to system i’. The combined relation is

zi1 = A;E;z;, (2.2)
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where
z;—3 = |[PT,,1]7 = the position of the point in system i — 1,
A; = transformation for joint ¢ — 1,
E; = transformation due to link deflection,

and

z; = the position of the point in system :.
Considering the ith consecutive coordinate transformation along a serial link-
age, we can derive the location (r;) of a point along the ith coordinate viewed from
' the base frame.

T = T; ir,-, (230)

where

T = ;11 E, Aeriz . .'Ai'_"lE'ij_l Az , - (2.3b)

and ‘r; is the position vector related to the ith coordinate before the transformation
due to link deflection E;. -

I’; 1s useful to dlstmgulshgetween uxideformed joi:nt and deﬂéction rtrranrsforma-

ti(_)ns as rfollows

T, =Tj_1Ej_14; = T;_14;. (2:3¢)

With the revolute joint, for example, let z; of the :th coordinate be on the 2th link,

A; can be specified from the Euler transformation (Figure 2.3).

cos @; cos §; cosp; — sin ¢; sinyy; — cos @; cos b; sin¥; — sin ¢; cos ¥;
4 = sin ¢; cos §; cos p; + cos ¢; sinyp; —sin ¢; cos b; siny; + cos §; cos P;
T — sin #; cos ¥; sin §; sin 9¥;
0 0
cosd;sinf; 0
sing;sinf; 0 . .
cos §; 0
0 1

(2.4)
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The flexible deflection is assumed to be a finite series of separable modes which
are the product of admissible shape functions and time-dependent generalized co-
ordinates. Higher modes are comparatively small in amplitude. With small deflec-

tions, the matrix E; can then be expressed as

. 0 =0, 0y i 1 0 0 0
g | e 0  —b; wij 01 00

Et_;% —0yi; By 0w Tlo o 1 &|° (2.5)
” 0 0 o ol Lloo o1

where §;; is the time-dependent amplitude of mode j of link ¢; 6z,,,6,,, and 6;,; are
the angles of rotation about the z;, y; and z;; u;, v; and w; are the z;, y; and =z;
deflection components of mode j of link #; and m; is the number of modes used to
describe the deflection of link z. I; is the length of link <.

A; is a function of the joint displacement (g;) and E; is a function of link de-
flections (6;;). Transformation equation (2.3a), therefore, illustrates the functional
relationship between the position of a point along the ith link and the displacements
of all the joints and link deflections involved in the kinematic chain.

Taking a simple instance used later where the orientation is only specified by
rotation about one joint axis and no rotation exists due to the deflection, matrices

A; and E; can be simplified (Figure 2.4) as

cosf3; sing; 0 O
—sin,' cOoSs 3; 0 0
Ai = oﬂ oﬂ 1 0| (26)
0 0 0 1
_ 0 0 0 wu 1 00 0
- 000 O 01 0 0
E’“;‘S“’ 000 o0|Tloo 1
- 000 O 0 0 0 1
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The position vector iri‘ then becomes
"r;fzZ&i,-[uij,0,0,0]-%-[0,0,li,l]. (2.7)
= 7

2.2 Dynamics

2.2.1 Lagrangian Formulafion

The equation of manipulator motion can be derived from several techniques
[Greenwood] [Meirovitch], but the Lagrangian Formulation is known for its simplic-
ity and :sy'sternatical ap;r)rwc;)ac'h'.:rTo compare with the Newton-Euler method [Craig],
the Lagrangian is described in terms of work and energy with generalized coordinate
to develop the system dynaxmcsso that all the workless forces and constraint forces
are not necessarily considered. Therefore, the resultant equations are generally
compact and provide a closed form expression by joint torques and displacements.
In the case of flexible arms, the general coordinate (z) contains all the joint dis-

‘placements and link deflections. The kinetic energy (K E) for a differential element

" is written then integrated over the link. The potential energy (PE) includes the
stored energy due to joint and link deflections and the gravitational effect. Since
the kinetic and potential energies are functions of  and &, we can write Lagrange’s

formula as

d (8KE\ OKE _9PE _
dt oz; 6&:}' + Oz; __

since the potential energy (PE) is usually not a function of . Q; is the generalized

Qi, (2.8)

force corresponding to z;, such that Q;z; is the power input to the system when z;

changes.

2.2.2 Kinetic Energy

In this section, the expression for the system kinetic energy is developed for

use in Lagrange’s equations. First of all, consider the kinetic energy of a point on
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the :th link:
1 dr; dr]
KE; = dKE; = —/ Trace (——1—’—) dm, 2.9
linki 2 Jinki dt dt 29
where dr/dt is called the velocity vector.

Taking the derivative of the transformation (2.3a) with respect to time,
=T i+ T (2.10)

Because of the recursive nature of the transformation chain, it is efficient to
relate the position and velocity of a point transformation in the product. The

velocity Ti and accelerations ‘1"’,- é,re easily derived by straight forward differentiation
Ty =T;_14; + Tj—14;
_ f’j_lAj . Tj_l %‘:—:qj ’ (2.11a)
Ty =T, 14; + of 1 A; + Tj_14;

54

f . (2.11b)
+ i-1-(9—‘q32fqi-

! L OA;
=T, 1 +2T;.1=24¢;
J J aqj 7
Since A; is a function of the joint displacement (g;), Tj and T_7 can be computed

recursively from Tj_l and T_,-..l. A similar approach is applied to find T’j_l and its

derivative with the transformation E; which is a function of link deflection (é;).

~

T; = TE;, (2.12a)

»
~

Tj = TjE_«,’ + TjEj

. m (2.126)
=T;E; + T; Z 8k Njk ,
k=1
Tj = TjEj + QTJ'E.'J' + T;Ej
(2.12¢)

= j;jEj + 2Tj ZSjkNjk + T; ZgjkNjk ,

k=1 k=1
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where
0 —baji Oy ujk
) ik 0 -6 Pk Vik
N = | %= zjk U]
7* ~0y5x  Ozjk 0wy
0 0 0 0

Differentiating the position vector related to the ith coordinate *r; with respect
g p p

to time becomes
;= 25” uu,v,:,,w,J,O]T. (2.13)
J=1 .

Therefore, the kinetic energy for link ¢ can be derived from (2.9) by integrating over

the hnk

KE; = 5‘/11 K (Ti 17',' 1'r'iTTg-T + 2T, 17‘,‘ ‘e‘»iTT,' -+ T, 17"7,' lrtTTlT)dm (2.14)
nki ’ '

Summing over all n links, one finds the system kinetic energy to be

KE = / dKE;, (2.15a
; links )
KFE = Z Trace( TB;;,T + 2T, Bz,TT + TBhTT) (2.15b)
i=1.._
where
Bu=Y_ Z 516 Cin o (2.15¢)
3=1k=1
and
1
Cirj = E/I;nk_[mk,vik,wik,o]T [wij,vij, wij, 0]dm; (2.15d)
Z 6:;Ci; + Z Z 8;16:5Curj (2.15¢)
i=1 k=1 j=1
and
Cij = % Ank [O,O,Zi,l}T [uij’vij,wij,o]dm; (215f)
i = C + Z 51._1 ij + Cz] + Z Z §; k51,JCzk_7 3 (2159)
k=1j=1
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and

1
C; = —/ 0,0,2,1]7[0,0,z;,1]dm. 2.15h

It should be mentioned that the kinetic energy for rigid robotic arms can be
obtained with the same procedure without considering link deflection [Hollerbach],
and the steps leading to these terms are found in the reference [Book,1983]. With
assumption of separation of variables, the link deflection is described by a product
of generalized coordinates and normal modes. Normal modes can be found by finite
element techniques for irregular link cross sections for given boundary conditions

as will be discussed in the next chapter.
Alternatively, the kinetic energy can be expreésed by
ZKE = —Z T Mg; = -ZZM,kz,zk, (2.16)
i=1 j=1k=1
where the M;; are the elements of the inertial matrix M and &; is the velocity
vector including all generalized velocities, for example, ¢; and Sj -

To equate (2.15b) and (2.16), first let the derivative of T; with respect to time

be
i—1 my
T; = Z Th1UnTign + Z Ty Nui "Tibn (2.17a)
h=1 h=1k=1
where
0An
Uh - 8qh, Y
and
T; = AyE1AzEy - ApEy - -- E; 1 4
= Tho1 ALEx T}
A ] (2.17b)
=Th14r "T;
= T,E) M1},
where

Thoy = A1Ey -+ Ap_1En—y



hTi = EpApyr - Ei1A; (2.17¢)

AT = Apt1En B Ay

In order to derive the inertia matrix in (2.16), it is convenient to define the

following:
Dip = Ci + Z6ilCilk ) (2.18a)
=1
F C + E 6zk [ ik + C; k) + Z 61] Cl]k ' (218b)

k=1
Then, through exchangin;g'the trace and sum operation and collecting the terms
along with arranging them for efficient computation, the inertia coefficients in (2.16)
are divided into three gr;;i)sw the joint angles ¢;g;, the Jomt angle and link deflection
(j,ﬁjk, and the link deflections 6,-k5jz. o

All occurances of ¢;¢; are in the first term of the right-hand side of equation

(2.15b).

n

Z S°S Trace[(TaoiUs ®T:) Fi (TaeaUn *13)7 | durdn - (2.19a)
i=1 a=1h=1

t\)l'—‘

However, the inertia coefficients of ¢; 5jk come from the first and second terms

of equation (2.15b) and are shown as

i—=1 mg
= Z Z { Z Z Trace [(Th_th hfl.",')F,- (TaNog aTi)T}q'hSQﬁ

1—] h=1 a=18=1
(2.19%)

+ ZZTrace{(Th_th "Tho1Un M) Dy T 1 4ndis } :

i=1

The three terms of the right-hand side of equation (2.15b) which include &-ksﬂ

I | M

14

W %

L

|

1B

ql

B

IO DU | ql

U



{’

i

23

are expressed as follows:

n i—1 my i—1 mg
1 ( Z Z Trace [(ThNhk hTi)Fi (TaNaﬁ aTi)T]Shkéaﬁ.

2 i=1 h=1 k=1 a=1=1
+ 2Trace [(ThNhk hTi) DikTiT } Shk&j ) + Z Z Trace [T,-Cik_,-TiT ] (éij(é,;k
j=1 k=1

(2.19¢)

2.2.3 Potential Energy

In addition to the computation of the kinetic energy, we need to find the po-
tential energy in order to derive Lagrange’s equations of motion for the dynamic
system. The potential energy of the system arises from three sources as considered
here: joint elasticity, gravity and link deformation. The first term is associated
with joint coordinate g;, the second term is a function of position, and the last
term, called the strain energy, results from the energy stored in the link due to de-
formation. Therefore, the potential energy related to the gravity and link deflection
can be derived from integrating over the lengfh of the individual link, and then

summing over all links.

2.2.3.1 Flastic Joint Potential Energy

We consider an n-link manipulator with revolute joints, and model the elastic-
ity of the ith joint as an equivalent torsional spring with stiffness K; since each
kinematic joint is actuated directly with some sort of actuator. However for a linear
actuator used to rotate a revolute joint through the use of a four-bar linkage, the
equivalent stiffness can be found by the corresponding transformation between joint
and measurement spaces [Craig,1986].

The coordinate §; in the joint transformation A; along with the equivalent

stiffness K.; constitute the elastic joint potential energy which does not involve the



24

coordinates associated with link deflections. The formula for this potential energy

is described as
n

PE, = zn: PE.i=) -;—Ke,-q? : (2.20)
i=1 i=1 ' ' o

Note that the coordinate g; is measured from the unstretched position go; to
gi. In other words, the elastic joint potential energy has the positive value relative

to the “basic energy” which is a function of gq;.

2.2.3.2 Gravity Potential Energy
In robotic arms with elasticity, the graﬁty potential energy for a differential

element on the zth link is

dPE, = —g"T; ‘ridm, . (221a)
where the gravity vector g has the form .

97 =(9z,9y,9:,0]. (2.21b)

Integrating over the link and summing over all links, the gravity potential

energy becomes

n o -
PE, = —¢" ) T, (2.22q)
i=1
where
hi = mihmi + Z ik €ik 5 (2.22b)
k=1 : -

m; = the total mass of link 7, hp,; = [0,0,k.;,1]T = a vector to the center of gravity

from joint : (undeformed), and

I
€ik =/ [ ik, Vik, Wik, 0]7 dm. (2.22¢)
0

From the above we know that if the link is homogeneous, the total distance of

the center of gravity is the addition of those of the deformed and undeformed parts.
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However, the gravity potential energy is a function of generalized coordinates, g;

and 6,']'.

2.2.3.3 Link Strain Potential Energy

The link deflection for a slender beam is assumed to be a linear combination of
the general coordinates é;x(t) and mode shapes u;x, v;x and w;, in z, y and z axes
respectively, while the rotational components 6, of the link deflection are taken
into account in the z axis. Compression is not initially included as it is generally
much smaller. With a truncated modal approximation for the ith link deformation,

the equation in the z-direction is shown as
m;
Ug; = z 6,-ku,-k . (2.230,)
k=1
vyi is then represented in y-direction and
b= b (2.23b)
k=1

The strain potential energy related to the link deformation which is integrated along

the z;-axis coincident with the link is described as

2
0%vy;
2

i 2. .
PRa=3 [ | BL(G + EL
2 Jo 5

6*2 )2 + EGJ:(%)z] d.‘:i ; (224)

Bzi

where E is Young’s modulus of elasticity and I, and I, are the area moments of
inertia of the link about an axis parallel to the z and y axes, respectively, and
through the centroid of the cross section. Eg is the shear modulus and J; is the
polar area moment of inertia of the link.

By taking the modal summations (2.23) and its corresponding y-component,
the link strain potential energy of the ith link PE; can also be represented by

summation of the potential energies in z, y and z directions. Those are PE,;, PEy;
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and PEZ,'.

"

1 2u; e d*ui
PE,, = - E E i1 bl bir—— | dz;

il i u;; du;
=‘225215tk (/; ElL d'“’; d:‘d‘"‘dﬁi),

i=1 k=1

(2.25a)

I l l
S 6ijbu ( / EI, dd'“ d” d,.i) : (2.25b)
0 2} d:

ji=1k=1
1 m; my l; d8,:; db.;s
PEzi = - 6i '6i . zi] z1 d:i ' 5.5
2 j=1 ; 7o (\/0‘ EGJ dZi dzi ) ( 5C)

Summing the above equations, PEy; in (2.24) then becomes

mMe MM,

PE; = Z Z bi; 61;, K.k + Kyijr + K.ijk ), (2.26)

Jlk]

where R.ijk, Kyijr and K.ijr are stiffness coefficients.

Ky,'jk, Kzijk = etc.

Note that the stiffness coefficient must be symmetric, for example, A =
Kzikj. The link strain potential energy for the total system PEy can therefore be

written as
m, m,

PEd Z Z Z 611511‘:1‘::11_11: ’ (227)

_ i=1 j=1k=1 S ey
where Kgijr = Kzije + Kyise + Keijk.

It is mentioned thatr PE, is independent of ¢;, the joint coordinate. In fact,
equation (2.27) can be made much more general than the initial assumptions re-

garding the link strain energy. Compression strain energy and link forms other than

Wi wl e a6 i

0y

ey
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beams, for example, can also be represented in this form. The values of coefficients

Kaijx can be determined analytically or numerically, e.g. by finite element methods.

2.2.4 Equations of Motion

The Lagrangian formulation (2.8) leads to a compact system of equations which
is appealing from both the dynamic modeling and control engineering points of view.
To continue the development, it is convenient to define all generalized coordinates

as Tij and let

- _Ja =0
= {6ij j= 1a2:"'9mi : (228)

By collecting (2.19a), (2.19b) and (2.19¢), the kinetic energy thus becomes
summation of coordinates Z;;Z44 multiplying the inertia coefficient m;;o3, which is

analogous to (2.16).
NN mijastiitas (2.29)
The potential energy for the elastic joint (2.20) is then

%é:"J (2.30)

Note that j equals to 0 since the link deflection is not involved in this case. The

gravity energy is a function of position so that it can be represented as

=1,---,n

PO (2.31)

PE, = PEy(zi;) {

Furthermore, the link strain potential energy (2.27) which does not involve the

joint coordinate is shown as

n m; m
PE; = %ZZ; lekmthlk (2.32)
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Now we are going to derive the Lagrangian equation of motion. Since m;jqg is

a function of z;; or zqg in (2.29), the first term in (2.8) is computed as

d 6IxE d
dt Bqu E‘ ( Z m,,pqm”)

i=1 j=0 e
"L " dmupq
= Z Z MijpgTij + Z Z Tij (2:33)
i=1 j= i=1j=0 - ST
n my T om o m, am o
= Z mupqmu + Z Z Z Z 11pq 331_7130:5 =

i=1 j=0 i=1 j=0 a=13=0

The second term in (28) includes the %a;rtial ‘derivative of the kinetic energy

given by

- (2.34)

Taking the partial derivative of the potential energies of the elastic joint and

the link deflection leads to

™my

O(PE. + PEy)
( 9 pg Z KpigTpt (2.35)
whére o i o
- _ | K.in (2.20) when I =0 s
Bptg = {Kd,-j), in (2.27) when{#0 "’ (2.36)
And the gravity term comes from (2.22) or (2.31).
8PEg —gT E?:p EQEL_ hi - gTTPGP‘I when q ?é 0
G T «n 8T 1. h —0 " (2.37)
qu -9 Lti=p Bzpq when g =
Note that Z;p 38—27:- = %—‘:: =0 When p = n and ¢ # 0. Henceforth, the gravity

term is a function of z,, and we define G(z) = [Gp,] With elements (2.37).
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Finally, combining (2.33), (2.34), (2.35) and (2.37), we can obtain the equations
of motion for zp,.

n m;

E : § : MijpgTij
i=1 j=0

n m; m Mg

+3°3°3° Y Hijaspatijtas (2.38a)

i=1 j=0 a=1 =0

m
+ Z Kpigzpt + Gpg = Qpg »
- - =0 '

where
Omijpg 1 0mijap
Bmaﬂ 2 62:pq

Hijappg = (2.38b)

Note that Qpq is the generalized forces which are assumed to act on the indi-

vidual joint. Therefore,
Qpg =0 when ¢ # 0. ' (2.39)

The dynamic equation (2.38) can glso be written in Matrix-Vector form as
M(z)i + H(z,z)z + Kz + G(z) = Q. (2.40)

In the above equation (2.40), we ignore friction, backlash and other distur-
bances that are called uncertainties, R(z,z). Those will be included when the

feedback control applied. K is known as the stiffness matrix.

2.2.4.1 Some Properties of Coefficient Matrices

To compare (2.40) with (2.382), the inertia matrix M(z) and coupling matrix
H(z,2) can defined as [m;jpe] and [Hijp,] respectively, while the element of the
vector z corresponds to z;; in (2.38a). In the following, it is illustrated that the
inertia matrix is positive definite as well as symmetric and (M — 2H) is skew-

symmetric.
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From equation (2.10), 7; can a.lsorbe represented as
= JiZ, (2.41)

where J; is the 4 x [n.x (m; + 1)] matrix. Then, the kinetic eﬁergy on the ith link

(2.9) becomes o
1 ,
KE;, == / Tr(zJT J;z) dm , 2.42)
2 Jlinks ( ) (
where JTJ; is symmetric. Summing over all n links, one finds the corresponding
equation (2.29) in a scalar form. Therefore, it is again shown that [m;j.s] in (2.29)
or [mjpg) in (2.38) is symmetric.

The kinetic energy in (2 29) can be expressed as a quadratic form in the gen-

eralized velocities and is a posmve value by physwal reasomng The necessary and

sufﬁment COIlthlOIlS for this are that the inertia matnx satlsﬁes posmve deﬁmteness,

unless the system is at rest.

The coupling element Wthh represents the coefficient in the second term in
(2.38a) has the following relation:

'nm.'nma'ai' 3”,
S (G - T ) s

i=1 j=0 a=15=0

n m; n

om; :
3) Dl DIpSLLCTIN PN

1j=0 | a=1p=0

n Omasss _ Omasi )
B (55 () ]

1j=0 | a=18=0

(2.43)

By comparing it with (2.40) and defining the element of the coupling matrix H as

' 7[H:,p;]7, ‘we can derive

"L A Om; 1S & [ Ome Omagii \ .
Bl = 53 3 Gt og 435 3 Teom - et ) 5,
a=18=0 a=18=0 Y Pq
5 5 . (2.44)
_ _1_ MaBpg mcxﬁij) ,
=3 (s} + 5 Z Z ( By 02 pq Zap
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Defining W = M — 2H, the above (2.44) gives

amag amag .
Wiipg Z }: ( &Cz;q Pq) Zap s (2.45a)

a=18=0 Tra
and n
W= ( afij apq) Zop
Pqij ;52::0 0z pq Oz;; i (2.45b)
= —Wiipq

This shows that (M —2H) is skew-symmetric; i.e., W+ W7T = 0. By setting mg =0
in (2.43), it becomes the case of rigid robotic arms, which was found in reference

[Asada, 1986].

2.3 Summar

A transformation between two coordinates which includes rigid body motion
and deformation has been established in the form of a 4 x 4 matrix. Therefore,
any point on the robotic arm can be described from the base coordinate in terms
of those transformation-s.. The kinetic and potential energies have been obtained by
integrating the velocity and position of a point over the total system. These energies
were used in Lagrangian equations. It is noted that the structures of the equations
of motion for rigid [Asada,1986] and flexible robotic arms are very similar as given
in equation (2.40); while the generalized coordinate variables are different for those
two cases. Additional variables, namely the deflection coordinates é;;, are used to
describe the link deformation so that the stiffness coeflicient in (2.40) originates
from the strain energy. Furthermore, the inertia matrix is shown to be symmetric
as well as positive definite and the matrix W = M — 2H 1s skew-symmetric.

So far, some uncertainties, such as friction, backlash and actuator dynamics
have not been modeled and a revolute joint must connect two links. The flexible

deformation which is valid for small deflection of the link is represented by a product
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of mode shapes and time-dependent coordinates, while the structural damping is
not involved. Nevertheless, the proper mode shape is the determining factor for

dynamics, especially the system natural frequency, and will be discussed next.
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Figure 2.1 Coordinate transformation.
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Figure 2.2 Transformation due to rigid rotation and link deflection.
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Figure 2.3 Euler transformation.
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Figure 2.4 Point position coordinate.
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CHAPTER III
VERIFICATION OF SYSTEM DYNAMICS

In this chapter, two prototype models of flexible robotic arms are used to verify
the dynamic equations obtained from the previous chapter. The frequency and
time responses are two approachcs one can use to demonstrate agreement between
analytical and experimental results. The actuator dynamics will be considered in
this chapter because it is essential from the experimental point of view. However,
a linear case has been adapted for comparing analytical and experimental results,

using sufficiently slow and small motion of the links.

3.1 Two Cases of Experimental Setup

There have been two different experiments established at the Flexible Automa-
tion Laboratory at Georgia Tech. The first experimental apparatus (Figure 3.1) is
a one-link flexible manipulator driven by an electric torque motor. The arm, which
is a four foot aluminum beam with the section oriented so that there is increased
flexibility in the horizontal plane. Two strain gauges mounted at the base and at
mid-length of the beam measure the link deflection. Table 3.1 lists the physical
pro.perties [Hastings, 1986].

The other apparatus is a two link manipulator, RALF (Robotic Arm, Large and
Flexible), with a parallel mechanism (Figure 3.2). Each link is a cylindrical hollow
beam, ten feet long. The parallel mechanism’s function is force transmission for the
upper link which is made of rectanéular shape. The weight of the robotic structure
is about seventy pounds. More details are given in Table 3.2. The analytical work

involved is more complicated than the first case.
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3.2 The Case of a One-Link Flexible Manipulator

The process of forming the dynamic model for flexible manipulators has been
discussed in the last chapter. One difference from the rigid manipulator is the ex-
istence of the stiffness term in (2.40) which determines the system vibration due to
the flexible link deflection. Since the one-link beam moves only in the horizontal
plane, the ﬂemble deflection is simply descnbed by an mﬁmte series of separable
modes without regard to the structural dampmg effect. In other words, the deflec-
tions in z- and z-directions of E; in (2. 6) has been ignored and the deflection in

y-dlrectlon is ngen by
n

vo(zt) =Y vi(z)é; (t) - (3.1)

i=1
However, the first few modes will be accurate enough to describe the flexible deflec-
tion because tlﬁrl:;;.'mplitudes of higher modes of the flexible link are small compared
to the amplitudes of the lower modes. ﬁére, n is selected to be 2. The transforma-
tion of a rigid-body motion has been expressed as A; in (2.6). Thus, the equation

of motion can be derived as presented in Appendix 1.

3.2.1 Comparison of System Frequencies

The beam, directly driven by the torque motor (which is here considered as a
high bandwidth torque source), is controlled by feedback signals from the joint in the
case of a one-link manipulator. Therefore, the clamped-mass boundary conditions
are imposed such that the mode shapes v;(z) in (3.1) can be derived from the
Bernoulli-Euler beam formulation. Because it is a simple structure, the solution can
be obtained analytically [Sangveraphusiri]. It should be noted that the numerical
result by finite element methods shows agreement of mode shapes in Figures 3.3-
3.4. Table 3.3 compares the measured modal frequencies (see Figure 3.5) to those

computed from the linear dynamical equations with the mode shapes using the
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analytical and finite element methods.

When a small amount of proportional damping is employed, the simulations
of the dynamic motion with two modes result in the plots shown in Figure 3.6a
for a step change in the desired joint angle. Note that joint feedback has been
implemented in this case. The strain measurement at the base is shown in Figure
3.6b. It can be seen that the model implemented with only the first few modes
produces results that agree with the experimental data [Hastings, 1986). Therefore,
one concludes that the best mode shape as determined by the boundary conditions
is one of the main characteristics of the system. Obviously, the clamped-mass shape

is acceptable in representing the link deflection in this case.

3.3 The Case of RALF

The total system of RALF should include the actuator dynamics in addition to
the two-link manipulator with a parallel mechanism. Hydraulic actuators are here
employed to drive the structure. Since the actuator has an equivalent stiffness for
its dynamical characteristic, natural frequencies of the total system may differ from

the original static system. Therefore, the hydraulic motors will be discussed first.

3.3.1 Dynamic Representation of Hydraulic Motors

The nonlinear model of the hydraulic system is based on the following [Merritt]
[Lai, Nair]
(1) negligible line dynamics and line losses
(2) constant replenishing pressuré
(3) negligible external leakage
(4) constant fluid properties

(5) simplified servovalve dynamics



{

40 =
-
The linearized servovalve flow equation is _
=
QL = I{qzv - K.P, (32) -
R < Tt - -t = ST, e - - N g
-
where _
Q1 : load flow, =
K, : valve flow gain, - ;
=~ I
z, : valve (stroke) position,
K, : valve flow-pressure coefficient, %
Py, : load pressure difference.
Application of the continuity equation to the motor chamber yields the follow- a7

ing formulation for the displacement of piston (z,).

‘ -
QL = Api, + C,Pp + YiPL , (3.3) -

, e =
where —
Ay : area of piston, - - -
Cp : total leakage coefficient, =
V; : total volume of fluid in chambers, -
8. : effective bulk modulus of system. _

Applying Newton’s Second Law to the forces on the piston, the resulting force

equation is —_
Fo=A,PL = Mi&, + Fp, (3.4) -

where

Fy : force generated or developed by piston,

M, : mass of piston, ‘

Fp : arbitrary load force on piston. -

-
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Finally, equations (3.2), (3.3) and (3.4) are the three basic equations for the

hydraulic system and may be solved simultaneously by Laplace Transformation:

no - Ut gige) B
iCp = 2 2{&_ b] (3'5)
(5 +Hagp)
(-bh h
where K. = total flow-pressure coefficient,
g4z | |
wp = | = = hydraulic natural frequency, (3.5a)
I/tMt,
K. eM 1/2
& = 7:; ['8—41—/;—1] = damping ratio. (3.5b)

Note that the details for the hydraulic system used here are listed in Appendix
2 [Huggins]. The parameter w; is the natural frequency due to interaction of the
inertia with the trapped oil springs and is very important because it establishes
the overall speed of response of the valve-motor combination. Therefore, we can
obtain the hydraulic spring rate kj, from ws, while ky, is simply a useful concept in

computing hydraulic natural frequencies and interpreting dynamic response,

by = P22 (3.6)

In general, the bandwidth of the servovalve and amplifier used as parts of the
hydraulic circuit are much higher than that of the motor. The servovalve dynamics
can then be simplified as a proportional gain (K,) in the feedback control system.
Figure 3.7 shows the block diagram which is applied to an open-loop control.

The actuator is a third order system from the input voltage of the servovalve
torque motor to the piston displacement of the hydraulic motor. In order to find
the hydraulic spring rate k5, one can measure the response of the piston position

to a swept sine input. Figure 3.8 and 3.9 illustrate Bode plots of the experimental
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tests for the joint 1 and 2 actuators respectively without additional load. Note that
an LVDT (linear variable-differential-transformer) attached the piston rod is used
to measure the displacement data.

Curve fitting the measured frequency response data which is the dashed line
in the figure gives a third order transfer function for the motor dynamics block of

Figure 3.7 of each joint.

5.217E3

For Joint 1: 22 = —— , 3.7
or Jolnt 1+ " = T T 383650 » + 7.50054) (3.7a)
For Joint 2: =2 = 337403 (3.7b)

z, ~ s(s? +4838F2s +9.869F4)

_ The hydraulic natural frequencxes for the actuators at Jomts 1 and 2 computed

7 by (3 5a) are approximately 43.6 Hz and 50.0 Hz, respectively. Thus the hydraulic

spring rates are calculated to be 1.54E3 1b/in for Jomt 1 and 6. 03E3 for joint 2.
With assumptions made earher, the above analysis for the actuator dynamics

is considered acceptable for generating the input force to the robotic structure from

the feedback control v1ewpomt The next sectlons will therefore concentrate on the

structure 1tself wrthout the actuators.

.2 Finite element Method for Modeling RALF

The equation of motion for two serial flexible links has been derived with
clamped-free mode shapes by several researchers [Maizza-Neto] [Centikunt|. How-
ever, this analytical method may not be suitable for complicated structures such as
the RALF mentioned in the previous section. It is easily observed that the major
difference between the RALF and two serial-link arms is a parallel link used to
drive the upper link in the RALF and forming a closed kinematic chain system. So,
finite element methods are used to analyze the system and comparisons are made

between the numerical and experimental results. First, the RALF can be divided
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into small beam elements and the mode shape of each element is described as a
cubic function of displacement that satisfies the boundary conditions [Meirovitch].
By combining discrete elements into the complete structure, one can simultaneously
obtain the natural frequency and its corresponding mode shape for the entire sys-
tem. The essence of the finite element method is to regard the continuous structure
as an assemblage of discrete elements. For this assemblage of discrete elements to
represent the structure adequately, the boundary impedance must be matched. If
the actuators are not attached to the RALF, the boundary in the driving joint in
Figure 3.2 is considered to be clamped.

Table 3.4 shows comparison of the results from experiments and finite element
methods, while the joint angle between the upper and lower links is 90°. Exci-
tation consisted of sweep sine wave. Measurements were taken by accelerometers
alternately placed along the links at 10 points along the link.

When the linear hydraulic actuators are attached to the structure, the clamped
boundary condition used previously must be modified. However, the hydraulic
spring rate kj can be thought of as a “dynamic” spring in some sense so that the
boundary condition for the driving joint can be modeled as a concentrated spring
with an equivalent stiffness. The results for natural frequencies are shown in Table
3.5a; and the first two mode shapes for the upper and lower links are shown in
Figures 3.10-3.13. Figures 3.14 and 3.15 illustrate the frequency responses from the
upper and the lower links respectively.

Obviously, natural frequencies of the first few modes are approximately iden-
tical whereas the mode shapes are closely matched. The only deviation occurs in
the mode shapes of the lower link due to measurement errors of complex structures.
Note that the cubic spline of curve fitting is used to connect the values of the dis-

crete displacement obtained from experiments and finite element methods. A third
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order polynomial is the lowest order that can satisfy the Bernoulli-Euler equation
and continuity of bending moments.

With the hydraulic actuators queledrgsr concentrated springs with equivalent
stiffnesses, the analytical results will compare reasonably well with the experiments.
Furthermore, the parallel ink in the RALF has been simplified as a spring so that
the equations of motion as given in (2.45) can be obtained. Thus, the geometrical
constraint imposed by the para.llel and upper linké can be ignored in the dynamics
50 thgt the appljcatiqn of ;eal-time control is practical.

According to Hooke’s law, the compressional stiffness for a beam is

EA
km ===, (3.8)

where
E médulus of elasticity,

A : cross sectional area of the l;eé.ﬁl,

L : beam length.

. By cbmbiziinigr the hydfauljc spring of the second joint and the link elasticity
in series, the total stiffness becomes 5.8E3 lb/in. Now, we can mathematically
axileyéetwoéénalhnks w1t7helast1c1ty éﬁp}forted by the Eciuivajent spnr;g; instead
of a parallel mechanism and the hydraulic motors. Finite element techrniiques are

once again applied to obtain natural frequencies and mode shapes of the system as

shown in Table 3.5b and Figures 3.10-3.13.

The finite element analyses are quasi-static analyses, i.e., the system to be
analyzed must be linear (small motion). An assumed modes model does not have
this restriction. To determine the appropriate choice of component mode shapes,

experiments were performed on RALF. On examining the mode shape in Figure
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3.13, the first mode (5.69Hz) appears in the upper link only as a straight-line due
to joint rotation with minimal deflection. In other words, the coordinate transfor-
mation of the upper link deflection associated with the first mode described in (2.2)
is related to the transformation for the joint. Further assumptions are made below
to treat the system as two independent links with proper boundary conditions. As
in the previous chapter, equations of motion can be derived from the Lagrangian
fo;'mulation with assumed modes and then verifed by experiments.

The lower link is treated as a pinned-mass beam with a concentrated mass at
the end where the upper link is attached and a concentrated spring at the point
of attachment to the hydraulic actuator. The upper link is treated as a pinned-
free beam with a concentrated spring at the point of the parallel link attachment.
With these boundary conditions, one can obtain the mode shapes for each link to
describe the flexible deflection. With the rigid rotation for the joint and the first
few modes for the link deformation, eqﬁations of motion are therefore derived as
(2.45). Ignoring the nonlinear coupling and the gravitational terms results in the
linear case of the dynamics due to small motion. The system natural frequencies
using two assumed modes on each link are 6.0 Hz and 8.8 Hz, respectively.

The first two frequencies of the experiment are within approximately 7% of
those in the analytical system. The frequency of 30Hz is not present in this dynamics
model since the parallel link is considered as a massless spring.

In addition to the natural frequencies, the modal vectors constitute what is
known in a broad sense as the response of the system. Modal vectors are not
dependent on forcing. They are properties of the unforced system. Physical mea-
surements of the time responses of the forced system can be applied to verify the

analytical results. The following formulation is required to specify the relation
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between measured strains and the modal amplitudes.

e(ls,?) Col(l) CHyl) ... CoL(L)N\ /&)
€(l2, 1) Coi(l) Coy(lz) ... Coull) 62(1)
: = : : . : : ’ (3.9)
é(lm,i) Coy(lm) Coi(lm) ... Conllm) ém (1)
where
€ : strain,

C : distance from the neutral surface to the measured point, =~
¢ : mode shapes,

6: generalized coordinate for the deflection.
Here, m strain gauges are placed on distance ly, I ...l along the link, while n is
the number of modés selected to repi'esent the deflection.

Figures 3.16-3.17 show the strain responses at the mid-point of each link arising
from an impulsive force when the actuators are controlled. It is obvious that the
structural damping should be included in the dynamics. From Figures 3.14-3.15,
the proportional damping ratio of about 0.2 is selected for use in the simulations.
The results are shown in Figures 3.18-3.19.

The responses from experiments and simulations show similar characteristics.
A frequency of about 5.7Hz for experiment and 6.1Hz for simulation is most appar-
ent in the lower ink and a frriequéncy of about 9.12Hz for experiment and 9.18Hz for
simulation is most apparent in the upper link. Furthermore, the sine wave response
can also be used to illustrate a property of the dynamics system. Figures 3.21 and
3.23 show the strain responses of simulations for the lower and upper links, while
Figures 3.20 and 3.22 show the experimental results. Further tuning of the model

might improve the damping ratios of higher frequency modes.
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3.4 Summary

In this chapter, two experimental manipulators existing in the Flexible Au-
tomation Laboratory have been employed to verify the equations of motion devel-
oped in the previous chapter. If one omits the link deformation, the prediction of the
dynamical motion will be the same as that of the rigid robotic arms which is widely
known. Therefore, the emphasis here is on the link deflection which causes the
structural oscillations since it gives the system its characteristic natural frequencies
and modal vectors.

The robotic system cannot be operated without the actuators. Thus, the total
system model should include the links and the actuator systems. The property
of the total system may be different from the component systems, especially in
natural frequencies. From the experimental data, the actuator characteristics can
be determined and then implemented in the mathematical model. Finite element
techniques are applied to find out the link deflection which consists of the mode
shape and the generalized coordinate. Equations of motion can then be derived in
the standard form of equation (2.45).

In order to compare the experimental results of natural frequencies and time
responses measured at the strain gauge with the analytical results, the equation of
motion for the above described analytical modal must be linearized. The excellent
agreement between the analytical prediction and the experimental data is clearly
a result of correct modeling of the system; in particular, the appropriate choice of

boundary conditions.



Table 3.1 Physical properties of one-link flexible manipulator.

Flexible Beam:
" Material

Form

Length

Area Moment of Inertia

EI Product

SYSTEM PARAMETERS

-~ Aluminum 6061-T6
~ Rectangular 3/4 X 3/16 in
. 48 in

4.12E-4 in®
2

4120 1bf-in

48
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Table 3.2 Dimensions of RALF.
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--data of lightweight bracing manipulator

stiffness of lower link . EIy=

241957N-m?2

(Aluminum tube,outside dia. 141.3mm,inside d%a.134.49mm)

stiffness of upper link EI4=

113720N-m

(Aluminum tube,outside dia. 114.3mm,inside dja. 105.2mm)

stiffness of actuating link EI

(aluminum column,outside wiath 101.

20992 N-m<
émm,inside widch 92,25mm,

outside height 44.45mm,inner height 38.lmm)

the length of lower link 14=
the length of connecting link } =
the length of actuating link 13=

the length of upper link 14=
the length of rigid part of

upper link 1l.=
the position length of

small manipulator 1g=
mass per unit length of

lower link pP1=

connecting link po= -

actuating 1link p3=

rigid section of upper.

link _ Pe=

flexible section of

upper link PE=
the lumped mass at the end

of lower link my=
mass of small manipulator mg=
total mass of

lower link mp=

connecting link mo=

actuating link ma=

upper link m4=

the position length of
center of gravity of

lower link ri=
connecting link rs=
actuating link ro=

upper link r4=

3.048m (10 ft)
0.4662m

3.048m (actual 2.2m)
3.958m

0.502m
3.048m

3.9817kg/m
2.5kg/m
2.6545kg/m

6.58kg/m
2.893kg/m

2kg
25kg

12.136kg
1.1655kg
8.0909kg
13.284kg

1.524m
0.2332m
1.524m
1.7903m
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Table 3.3 Comparison of modal frequencies (Hz) of One-link case.

Mode Measured Analytical Finite Element
1 2.08 2.096 2,088

13.92 13.989 13.955

41.38 41.524 41452

81.18 81.225
: 136.352 136.345

81.203
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" Table 3.4 Comparison of modal frequencies (Hz) of RALF without actuators at-

tached.
Mode Experiment Finite Element
1 6.37 5.95
2 12.00 12.78
3 37.87 30.19
4 57.37 60.60
5 94.02 95.05
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Table 3.5a Comparison of structural frequencies (Hz, with actuators attached).

Mode Experiment Finite Element
1 5.70 6.08

2 9.12 9.12

3 30.00 29.70

4 49.50

Table 3.5b Comparison of structural frequencies (Hz, with actuators attached).

Mode Experiment Finite Element
1 5.70 5.82

2 9.12 9.18

3 30.00

4 55.70
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CHAPTER IV
THEORY OF CONTROL ALGORITHM

The light weight manipulator is a challenging research topic with potential to
improve performance over today’s robot. The main problem with light-weight struc-
tures is the flexible vibrations which are naturally excited as the arm is commanded
to move or is disturbed. Control is one key to efficient use of lighter arms, but its
capability 1sﬂlgg1ted by uncertamtles in the arm’s behavwr and in the envu‘onment

The first step in de51gmng a control system con51sts of estabhsthg a dynazmc
model for the flexible arms. This has already been discussed in the two previous
chapters. In the following, the theory of a control algorithm will be developed. The

application to the flexible manipulator under different conditions is presented in the

next chapter to illustrate its performance.

4.1 Mathematical Prelimiary
One great concern in control is the problem of stability of the dynamic sys-
tem. The so-called “second method” of Lyapunov has been applied as the principal
mathematical tool in tackling linear and nonlinear stability problems of the most
varied type, particularly in the theory of control systems. However, the importance
of the Lyapunov method lies primaéiy in its point of view of system stability rather
than in its application as a design tool. The name “second method” is a philosophy
of approach rather than a systematic method [Kalman].
The intuitive concept of stability is that a dissipative system perturbed from
its equilibrium state will always return to it. In other words, from the energy point

of view, if the rate of change dE(X)/dt of the energy E(X) of an isolated physical
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system is negative for every possible state X, except for a single equilibrium state
X., then the energy will continually decrease until it finally assumes its minimum
value E(X.). However, the above explanation is based on the physical concept of
energy, and in general there is no natural way of defining energy when the equations
of motion are given in a purely mathematical form. The following statement is
considered as its mathematical equivalent: A dynamic system is stable (in the
sense that it returns to equilibrium after any perturbation) if and only if there
exists a “Lyapunov function,” i.e., some scalar function V(X) of the state with the
properties: (2) V(X) > 0, V(X) < 0 when X # X., and (b) V(X) = V(X) =0
when X = X,.. For instance, let V(X ) be a measure of the “distance” of the
state X from the origin in the state space, that is, V(X) > 0 when X # 0 and
V(0) = 0. Suppose the distance between the origin and the instantaneous étate
X(t) is continually decreasing as t — oo, that is, V(X) < 0. Therefore, X(¢) — 0

[Kalman)].

4.2 Definitions of Stability

In the mathematical formulation, the dynamics relates the state X and the
control function (or forcing function) u of the system. Continuous-time dynamic
systems will be treated here, but the concept of stability is analogous to discrete-
time dynamic systems. Briefly, the dynamics of systems are given by the vector

differential equation:
d

X = f(X,u1) t>0, (4.1)

where X € R*,u € R™ and f: R, x R™ x R — R"™.
If u = 0 for all ¢, the form of (4.1) is free (unforced):
d

=X = f(X,1) t>0), (4.2)
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where f : R, x R* — R™. Without loss of generality, the equation of (4.2) is used

to illustrate the definition of stability, while the input function u is usually bounded

and does not change the characteristic of system [Jordan & Smith].

It is always assumed that the function f in (4.2) is sufficiently smooth so that it
has a unique solution over [0, cc) and this solution depends on the initial condition
X(0). If an X, € R™ is said to be an equilibrium state of the system (4.2), at time
1o, then

tlir& %Xo(t) = _f(Xo,t) =0 V,t 2 to. (4.3)
That,the equilibrium state X, is set to be 0 does not result in any loss of generality.
Therefore, the stability of the system (4.2) at an equilibrium state X = 0 (the

origin) is defined as follows:

[Definition 4.2.1] The equilibrium state 0 at time £, of (4.2) is said to be stable at

time ¢, if, for each € > 0, there exists a 6(f,,¢) > 0 such that
X ()] < 8(to,e) = I X(t)|| < € Vi>ti,, (4.4)
where || X || is called the norm of X.

In graphic representation, it is shown in Figure 4.1 that there exists a radius
for every e such that if a trajectory starts at a point X, inside the hyperspherical
region of radius &, then it will always remain in the hyperspherical region of radius

€.

Furthermore, in Figure 4.1, if every trajectory starting inside some hyperspher-
ical region in the state space converges to the origin as time increases indefinitely,
an equilibrium state 0 is asymptotically stable (AS).

[Definition 4.2.2] The equilibrium sfafpe 0 at time ¢, is asymtotically stable at time

to, if (4.2) is stable at time {, and there exists a number 6(¢,) > 0 such that

1X (to)]] < 6(te) = [X(t)| 0 as t— oo. (4.5)
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Conversely, the system (4.2) is said to be unstable whenever, for some arbi-
trarily large € inside R and any arbitrarily small 6, there is always a starting point
X, within the hyperspherical region of radius § such that the trajectory from X,
passes beyond the boundary hypersphere of radius e (Figure 4.1).

In the last section, the scalar function V(X) to be called a Lyapunov function
is used to determine the stability of the system. If the system is of nth order, V(X))
may not be identified with energy level. From the definition of stability, another
interpretation of the candidate Lyapunov function V(X) results from a geometric
pattern in the state space. Therefore, we must first define some properties of scalar
functions [Takahashi]. A scalar function V(X) is said to be positive definite when

1. V(0) =0, and
2. V(X) > 0 in some region of X outside the origin. Let us represent the region

in state space by S. Then
V(X)>0, XeS; X #0.

3. V(X) is continuous in S, and
4. 8V(X)/Bz;,1=1,2,...,n are also continuous.
The partial derivative for condition 4 creates a gradient vector

avV(X)
81!1

grad V(X) = VV(X) = : . (4.6)

V(X))
Sz,

The time derivative dV(X)/dt along any trajectory of a system (4.2) is given

by

) = D L ovx) sx,0. (47)
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4.3 The Lyapunov’s Direct Method

In this section, the stability of systems in the sense of Lyapunov is given. The
proof is not discussed here and has been given in many works [Kalman] [Yoshizawa)
[Vidyasagar]. The theorem is that if there exists a Lyapunov function V(X') in some

region § (say a hyperspherical ball) around the origin, then the origin is stable for
all X contained in S. Therefore, some requirements need to be met before V(X)) is
called a Lyapunov function.

‘Referring to the last section, the following theorem is the basic stability theorem

of Lyapunov’s direct method with the system (4.2).

[Theorem 4.3.1] The equilibrium state 0 at time ¢, of (4.2) is stable if there exists

a continuously differentiable positive definite function V such that

V(X(t) <0, Vit>t, YX€S,  forsomeball §.

The state is said to be uniformly stable, if V is strictly decreasing in the
theorem. The theorem above provides sufficient conditions for stability but may

not yield necessary conditions. To apply them to a particular system, it is a fairly

simple matter to find a function V satisfying thé requix;e;nents.

There is a more restrictive definition of stability than the previous one in that
the condition V(X) = 0 is not allowed. This means that a trajectory will not be
allowed to stall on a closed hyperspherical ball of V(X) containing the origin, but
will always be required to approach the origin with a monotonic decrease in V along
the trajectory. Precisely,

[Theorem 4.3.2] The equilibrium state 0 at time ?, of (4.2) is uniformly asymp-

totically stable over the interval [t,,0c) if there exists a continuously differentiable

decreasing positive definite function such that —V is a positive definite function.
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4.4 Boundedness

The stability properties of the dynamical system have been recognized, under
the conditions mentioned before. However, the time responses are not easily ob-
tained, when the system (4.1) is nonlinear or uncertainty is included. A Lyapunov
function candidate, which is chosen from a Lyapunov function of a stable nominal
system, is utilized for the real system with uncertainties, and a control function
is then obtained such that the Lyapunov function decreases along every possible
trajectory of the uncertain system, at least outside a neighborhood of the zero state

[Chen]. Therefore, two definitions need to be specified [Leitmann] [Yoshizawa).
[Deﬁnitfon 4.4.1] Given a solution X(t) : [to,t1] — R",X(t,) = X,, of (4.1), we
say it is uniformly bounded if there is a positive constant d(X,) < oo, possibly

dependent on X, but not on t,, such that

[ X(1)]) < d(X,), Yt € [to,ta]

[Definition 4.4.2] Given a solution X(t) : [to,00) — R™, X(to) = Xo, of (4.1),
we say that it is uniformly ultimately bounded with respect to set S, if there is a
non-negative constant 7(X,,S) < oo, possibly dependent on X, and S but not on

t,, such that X (¢) € § for all t > {, + T(X,, S).

Stability properties have been illustrated so that the controller can be synthe-

sized in the following sections to stabilize the system. This is the main task in this

study.

4.5 Decentralized Joint Feedback

In this section, we will explain why decentralized controls can demonstrate
adequate feedback performance for flexible manipulators. Independent linear con-

trollers at each joint, commonly called joint proportional-derivative (PD) con-
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trollers, which are based on the local measurements of joint positions (¢;) and
velocities (¢;) are described as follows:

7 = —Kpi§i — Kpidi s (4.8)

where K,; and Kp; are positive constants. §; = ¢; — ¢»; and § =G — i, (4 = Gi)y
while g,; is the reference state and assumed to be constant. Physically, the feedback
system effectively equips eé,ch joint with eqﬁiva.lent rofa;;ry spring and damper. The
frequency domain approach has been taken with the linearized system in previous
works [Book, 1975], while the case of a rigid-link manipulator has been illustrated
by Asada and Slotine [1986]. A Lyapunov approach is applied here to show the
resulting stability.

Because the torques (7) only act on each joint, the following equality exists,

XTQ=¢"r, (4.9)
where X, Q are given in (2.40). ¢© = [g1,--,¢n] Tepresents the joint coordinate in
(2.40). 7 =[r,-++,7]T and 7 = Qio. In the absence of gravity and uncertainties

such as friction and disturbances, the dynamics (2.40) becomes

MX)X+HX,X)X+KX=0. N (4.10)

Lemma 4.5.1: Given a proper Lyapunov candidate (V) associated with the system
(4.10) with feedback (4.8), the time derivative of V can be shown to be negative.
Proof: Consider a Lyapunov candidate V associated with the total mechanical

energy of the feedback system [Slotine]:

. ,  lop. o 1
V(X,X,q) = % [XTMX + EXTKX + 5@1@,5] , (4.11)
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where K, = diag[K,;] and K is a positive constant matrix. Differentiating V with

respect to time gives,
V= T Kpd+ XTME + XX + XTRX
=¢TK,§+ XT(MX + KX) + %XTM.X , (4.12a)
By substituting (4.8), (4.9), (4.10) and (M — 2H) which is skew-symmetric into the
above,
V=¢"Ki+XT(Q-HX)+ %ATM.X
— K+ XTQ + %A(M _om)X
= K d+ |
=-¢TKpg <0, (4.12b)
where Kp = diag[Kp;]| is a positive matrix.
Now, the system with the local joint PD control is stable. This leads to the
development of an advanced control algorithm using the decentralized scheme which
is restrictive on information transfer from one group of sensors and actuators to

others.

4.6 Decentralized System

A system with a great multiplicity of measured outputs and inputs is commonly
characterized as the Large-Scale system. This situation arising in a control system
design may be treated with decentralization techniques. The designer for such
systems determines a structure for control which assigns system inputs to a given
set of local controllers, each of which observes only local system outputs. Figure

4.2 shows a two-controller decentralized system.

The advantages of this approach include-ease in data gathering, computer pro-

gram debugging and geographical separation of system components.
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4.6.1 Decentralized Dynamics

In the flexible ro»bot, unlike the conventional (rigid) robot, oscillations due to
link elasticity need to be stabilized in addition to controling the joints. Therefore,
the flexible manipulator systé;n becomes a large scale syéteﬁ. Each link can be
~ considered as a subsystem of the overall system.

In the absence of actuator dynamics, the system dynamics (2.40) of an n-
link flexible manipulator combined with friction and other disturbances treated as

uncertainties R(¢ € ) are given in the following equation:
M(&)E+ H(EEE+ KE+G(6) + R(6,6) = Q. (4.13)

Again, M(¢), the inertia matrix, is square, symmetric and positive definite.

Therefore, one can define a constant matrix 8 such that
1811 > 1M~ () - Bl (4.14)

where || || is an induced norm. Note that 3 is usually chosen to have zero elements

corresponding to subsystem coupling.

Equation (4.13) can then be rewritten as

F= M Y& [HEEE+ KE+ R(EE) + GE)] +8Q + (M) - Q. (4.15)

Now, take each link 7 as a subsystem and define state variables z; = (€, &7,
where ¢; includes one joint coordinate and m; generalized deflection coordinates for
link 7 (2.38). Equation (4.15) is divided into n equations for the n interconnected
subsystems. Therefore, each subsystem is described by a first-order differential

equation of the form

¢ = Aizi + biug + Fi(X) + fi(X)u;, (4.16)
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where i = 1,2,...,n; XT = [z, 2,... ,zn)T and u; = @, in (2.39); fi(X)u; = the
coupling terms of (M ~(¢) — B)Q for subsystem i. A; is a constant matrix which

represents the linear time invariant part of —M “HEK.
A,-:(Q I), (4.17)

while F;(X) represents the rest of —M 'K and the nonlinear terms of
-M~1(¢) [H(¢,6)E + R(£,6) + G(€)). b; becomes a vector form with zero elements

on the upper half.

(i) Fy(X) and f;(X) are assumed to be bounded and are modeled as system un-

certainties assumed to have the properties [Leitmann)]
def
Fi(X) = Fi(X,0), (4.18a)

F(X) Y fi(X,0), (4.18b)

where o € RP represents the system uncertainty and is continuous on RP as

well as the uncertainty bounding set.
(ii)
(A;,b;) is controllable. (4.19)

(iii) Moreover, there exist matrix functions D;() and E;() such that
Fi(X,U) = bi Di(_Y, 0') 3 (4.20a)

fi(X,o) = b; Ei(X,0), (4.20b)

where || E;|| < 1 from (4.14).
The dynamic system of flexible links is composed of rigid body modes and
flexible modes, with the linear combination of flexible modes used to specify the

deflection of any point along the arm from the position specified by the assumed
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rigid body modes. If the dominant dynamics is related to the rigid body modes, for
example the one-link flexible arm, then the flexible modes will contribute the most

The control schemes implemented here assume the satisfaction of the match-
ing conditions (4.20) [Leitman]. These conditions guarantee that the uncertainty
vector does not influence the dynamics more than the control input does [Gutman).
However, the uncertainties (4.18) which do not satisfy (4.20) can be tolerated if
they do not exceed the mismatch threshold [Chen, 1987].

Therefore, the overall system by the above assumptions will take the following

matrix form

X = AX + BU + BD(X,0) + BE(X,o)U, (4.21)

where for: =1,2,...,n
- A = diagonal (4;),
B = diagonal (B;),
D(X, o) = diagonal (D;(X, o)),
E(X,rs) = diagonal (E;(X,0)) and

UT = [uy,uz,. -, un)

4.7 Reference Model

The ob jective of model reference adaptive control is to eliminate the state error
between the plant and the reference model so that the behavior of the plant follows

the model. Consider the reference model first.
i’mi = Amixmi -}- bmiri 3 (4220)

where for 1 = 1,2,...,n

Tmi = [fmz ) émi]T;
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r; is the reference input;
and let
Ami = Ai + b Ky (4.225)
bmi = b; Ke: (4.22¢)
where K,; and K;; are constant matrices with the corresponding dimension.
Also, A,,; which is a stable matrix satisfies the Lyapunov equation
AT P+ Pidpi =-L;, (4.23)

where P, and L; are positive definite and symmetric matrices.

4.8 Decentralized Robust Contro
The signal-synthesis method [Landau] [Balestrino] implemented here seeks to
control the system by adjusting the input u; which is as described in the following

equation

u; = Ky X; + Kpiri + vilei) (4.24)

where €; = z,; — «; is referred to as state error and the function %, is the control

input to compensate the system uncertainty. Thus, let ; be

Tp. ..
b7 Pie; (X,e;,r;), when |[bT Pie;| > &;;

Thie,| P
Yi(e:) = ngppe I ) i (4.25)
5= pi(X,e;,mi),  when |[b; Pieil| < 6,

where §; is a prescribed posittve constant and p; is a positive constant which will
be specified subsequently.
As a result, the error dynamics of the subsystem is derived from the difference

between equation (4.16) and (4.22a) along with (4.24) and (4.20):

€i =Tmi — T4

= Amiei — bi(¥i +v;), (4.26a)
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where’

v; =D; + E,;(Ku':ci + Kyiri + 11’1) . (4.265)

Given the boundedness of the state variable z; and the reference input r,,

equations (4.26b) and (4.25) give the following inequality:
[vill < pi(X,€i5mi), (4.27a)

vahere

pil X, i) D) + I B (1 Kizall + [ Koirel| + [ie)l) - (4.278)

This definition involves p; on both sides of the equation. The definition of p; in

(4.27b) is valid, i.e., (4.27) can be solved since (4.14) is satisfied. Therefore, we have
pi = (1= BN ID:ll + HE (K [l + [ Kvim: 1] (4.28)

Now, consider a closed ball, B(n), centered at 0 with radius 7,

6;’ . 1/2
n = [Xﬁ-’()_f:-)] . (4.29)

where A ;. represents the minimum eigenvalue. Since L; > 0 from (4.23), one can

define
e(k) < {e; € R™*1 | el Pie; < k}. (4.30)
Let
k>k, (4.31a)
k = Amax (R‘)ﬂz ’ (4-315)

where Amax represents the maximum eigenvalue; and let

ko = eF (t,) Piei(t,) . (4.31¢)
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Finally, if €;(¢,) € (k), define
C, ¥ inf{eT Lie; — 46:p;} . (4.32)
Theorem 4.8.1: For subsystem i, consider the system (4.16) and the reference model
(4.22) with control (4.24). Conditions (i) - (iv) are met, then given any k > k, every

solution corresponding to initial condition (e;(t,),%,) € R™*! x R! is uniformly

bounded with

N\ /2
le:(0)] (%ﬁﬁ%})  for eito) £ c(k)

(m)  eean

and time T to enter e(k) is uniformly ultimately bounded with respect to e(k) with

d(ei(0)) = (4.33)

Teittye(k) = { (&7 for olted £ 1) (4.34)

Proof:
Since P; > 0, the function V() : R™*! — R, given by

V(e)=efPe; Ve €R™™M (4.35)

is a Lyapunov function candidate.

To show that it is indeed a Lyapunov function for the system (4.26a) with any
possible uncertainties, one needs to consider the time derivative of the Lyapunov

candidate (4.35) as described before in (4.7).

V(e;) = éT Pie; + e Pié; . (4.36)

V(ei) = e?(A?niPi + P,'Am..)ei - 26;Pibi(¢i + v,:)

= —e?L,-ei - Zet-TPz'bi(’(/)i + vi)

IN

(4.37)

TP.e.
—el Lie; — 2[b Pies]” {;bi _ b Piei } _

Hb:’rPieini



90
With control (4.25), thus
if ||b7 Pie;|| > &,
V(ei) < —e:-‘FL,-e,-;
if ||bT Pe;|| < &,
V(e:) < —el Lie; + 46;pi . (4.38)

Consequently, V < 0is a necessary condition to satisfy the Lyapunov function

for all t € R?! and all ¢;. Then,

e?Lie,- - 46,‘/),' > 0. (439)
From the definition of matrix norm,

Muin (L)€l < ef Liei < Amax(Li)lle:l]” - (4.40)

Since L; is positive definite, (4.39) and (4.40) give the following inequality:
Agin (L) llesl|? — 46505 > 0. (4.41)

Therefore, V < 0 is assured for all t € R! and all e¢; € B(n), where 7 is
given in (4.29). Now, consider the boundedness of all solutioné for (4.26a). (a) If
ei(to) € e(k), then () € é(ko), and (b) if e;(t,) & e(k), then e;(t) € e(k) for all

t € [to,t1]. The Lyapunov candidate gives boundedness.
0 < Ay (P)llex()]* < ¥ Pres < e (1) Prei(to) < Amax(P)lles(ta)?,  (4.42)

for case (a), which leads to

Amax(Pi)} vz
)‘min(Pi) !

0 < Amin(P)lle:(t)|” < el Pres < k

()] < les(to)l [

41 411 €] 1 & {

]
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for case (b), which leads to

L 1/2
el < | 5= ]
This proof shows the uniform boundedness result (4.33).
The ultimate boundedness result also follows conditions (4.38) and (4.39).
If e;(t,) € e(k), it is an immediate consequence of the boundedness result, and
T(ei(0),e(k)) = 0. If e; & e(k), then V(e;) decreases and e;(t) reaches the bound-
ary Oe(k) of the ball e(k) in a finite time interval. An upper bound of this interval

is obtained by considering

V(e(t)) < =Co, (4.43)
where C, is given in (4.32).
Define t' and e;(t') € de(k). It means that ¢’ is the time when e; crosses the

boundary of e(k). So,

V(et') - Viets)) S —Colt' — 1)

k—k, < —Co(t' —1,)

t—tp < = = T(ei(to), (k)

Then, this is uniformly ultimately bounded with (4.34).
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4.8.1 Physical Interpretation of the Control System

Some fundamental control techniques such as pole placement, optimal control,
state feedback and state estimation require complete information from all system
Sensors for> the sake of feedback control. However, these schemes are inadequate
for feedback control of large-scale systems. Due to the physical configuration and
high dimensionality of such systems, a centralized control is neither economically
feasible nor even necessary. Therefore, a total decentralization is employed, that is,
every local control is obtained from the local output and possible external input.
In many applications, some degree of restriction, however, needs to be assumed.
The control input here includes the linear and the nonlinear parts. The local and
linear feedback controller is used to stabilize the subsystem when isolated from
the rest of the system. Then, regarding the interactions among the subsystems as
uncertainties, a nonlinear controller is utilized to minimize the coupling effects.

The “matching conditions” embodied in condition (iii) assures that the range
space of the input, BU in (4.21), contains that of the uncertainties. Thus, there is
an input that can cancel the possible uncertainties. The nonlinear controller given
in (4.25) is a type of saturation control and a constant is imposed to determine the

saturated level. However, the feedback gain can generally expressed by

brp,‘e.' T
bilen) = 4 TFRegpo when [lbi Pedl] > & (4.44)
|¥:(e:)|| < pi, when ||pT Pies]] < &;.

Note that the controller in (4.44) which may be a discontinuous control leads to the
excitation of vibration modes in the case of application in a flexible structure.
Equation (4.14) needs to be satisfied so that condition (iii) is assured. This
means that a given control acts in the desired “direction”.
However, as distinct from other decentralized control schemes, the scheme pre-

sented in this chapter attempts to stabilize a large linear system by manipulating
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only subsystem matrices. Besides a considerable saving in the numerical aspects
of control, the presented scheme produces systems which are dynamically reliable
with respect-to structural perturbations and which can tolerate a wide class of non-
linearities in the interactions among the subsystems. As a matter of fact, by this
scheme systems can be stabilized in cases where we have no information about the
actual shape of the nonlinear interactions among the subsystems, and only their
bounds are available to the designer.

In the previous section, the uniform boundedness of each subsystem has been
proven. However, uniform boundedness of individual subsystems does not constitute
boundedness of the total system. Thus, one must consider the total system and

establish uniform boundedness and uniformly ultimate boundedness.

Theorem 4.8.2: The system (4.13) represented by (4.21) is uniformly bounded, if the
reference model (4.22a) of each subsystem is stable and the error dynamics (4.26a)
of subsystem is uniformly bounded with the control input (4.24).
Proof:

Let us assume that a Lyapunov function V; for the error dynamics (4.26a) of
subsystem 7 is known and consider the use of a weighted sum as a candidate for the

Lyapunov function of the error dynamics of the total system:

n
V=> dV, (4.45)

i=1
where the coefficients d;,7 = 1,...,n, are positive constants. Thus, V= Z:;l d; V..
From Theorem 4.8.1, Vi is negative, if all error states (e; = Zm; — ;) are

outside the ball region of (4.29). To choose the reference model to be stable and its

subsystem as described in (4.22a).

Xm = AmXm + Bmr, (4.46)
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where A4,, = diag[Am1++* Amn] and B, = diag[bmi-+-bmn]. Then, V < 0is
assured for all e(t) (e = [e1---en]T) € B(n), where a closed ball B(n) centered at 0

has a radius 7,

n 1/2
b:p; -
= |4 —_— . 4.47
7 [g(dn/\m(m} (440

Therefore, the uniform boundedness of the total system is clearly shown.

From Theorem 4.8.2, it should be emphasized the system may become unstable
if stability is not satisfied for any of the subsystems. In other words, the total system
(4.21) is stable, only if the vxﬁa;tching conditions are met for all subé&stems given by

(4.20).

4.9 Decentraliz daptive Control
The controller design implemented here has not been specifying the state re-
sponses in the transient time; i.e., large state error and/or oscillation transients
may occﬁr. To overcome this problem and to improve convergence speed, an aux-
iliary input wi(t) is introduced and applied to the input u; in (4.24). This input is

effectively an integral action. Thus,
u; = Rziz; + Kpiri + Yi(e;) + w; . (4.48)
The error dynamics (4.26a) then becomes
€ = Amie; — bi(¥; +v; + w;), (4.49)

where v; still has the same form as (4.26b) and is bounded in p;.

The auxiliary signal w;(t) is expressed in the following:
w; = —oy(t)w; + ST Pe; (4.50)

where S; > 0 and

(46:pi — Appin(L)]le:]]?)
2 mmin (8:) [|w: |12

alt) > vteR'. (4.51)

il ¢« &

i |

| I [ . (L I gae oy me o Wy

0y

(1



{l

95

With the feedback input in (4.48), the stability of the system needs to be

analyzed. The next theorem therefore specifies the result.

Theorem 4.9.1: The error dynamics (4.49) between (4.22a) and (4.16) with control
(4.48) is uniform bounded, if (4.23), (4.25), (4.27) and (4.50) are satisfied.

Proof:
The proof of this theorem is similar to that of Theorem 4.8.1. The only addi-

tional requirement to be considered is that there exists a Lyapunov function.

Define a candidate Lyapunov function which is positive definite,
V= e;TPie,- + wiTSiw,- . (4.52)
Taking the derivative of (4.52) along with (4.49) yields

V= —e,-T(Ag;iPi + P,'Ami)e,' - 2€,TPibi(‘¢/)i +v; + w,-) + 2u'JiTSiw,~

= —eTLie; — 267 Pies] (%: + v:) + [28itb; — 2b] Pies) ;. (4.53)
From Theorem 1 and (4.50), V in (4.53) gives the following inequality:
V< -e,TL,-e,- + 46;p; — 2aw,;TS,~w,- . (4.54)

And by satisfying (4.51), one obtains V < 0. Consequently, the system is evidently

uniformly bounded.

The auxiliary signal w; imposed here is to improve the system performance. In
the Lyapunov synthesis, convergence speed of a dynamic system can be compared
by a positive value ¥ = —V/V [Kalman]; i.e., the convergence rate in the feedback
system is faster, if the value v is larger. Obviously, the system with control (4.48)
has a larger value of v than that with control (4.24), if o satisfies the following

inequality.
ML) |le:® — 46ip:
A(P;) | e:]f?

(4.55)
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This can be seen by comparing (4.35) and (4.38) with (4.52) and (4.54). Note
that (4.51) and (4.55) are not conflicting conditions since (4.51) gives a necessary

condition on a(t) for the system with uniform boundedness.

4.9.1 Design Procedure

This section summarizes the procedure for this decentralized adaptive control
design. The inertia matrix can be acquired from the dynamic equation (4.13) so
that 3 is deternﬁhel:l fxioﬁl (414) to form b; in equation (416) A; is obtained by
linearizing the equation (4.13). According to equations (4.22), the constant feedback
gains K.; and K}, are calculated and the reference model A,,; and b,,; can be chosen
to be stable. P; and L; are obtained from the matrix Lyapunov equation (4.23).
The reference input =; can be directly derived from inverse dynamics of the reference
model with the values associated with the deflection states assumed to be zero; i.e.,
the reference input comes from the “rigid” dynamics only. Finally, the control input
u; is given by equation (4.24) and with an auxiliary signal given by equation (4.49).
Note that p; satisfies the inequality (4.27) and those bounds can be determined from
the workspace domain of robot manipulators and the state region of the reference

model. A case study is provided in Appendix 3 and the block diagram is shown in

Appendix 6.

4.10 Summary

The joint PD controller has been proven to stabilize the system, while the de-
centralized adaptive control with robust stabilization has been proven for motion
control of large structures and flexible manipulators. Under consideration of the
uncertainty for interconnected terms of each subsystem, the dynamic system of the
manipulator motion is illustrated to be bounded, while an auxiliary input with the

update action should have faster convergence rate and smaller steady-state error.
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The possible magnitude of the uncertainty is presumed known, making the statisti-
cal information for a stochastic approach unnecessary. Thus, the feedback systems
are also insensitive to other uncertainties such as friction, backlash, measurement
error, etc.

Without adaptation of parameters, this control has a simple control structure
for reducing real-time calculation. This leads to an attractive option both to address
complex tasks, and simplified high level programming of more standard operations.
The control algorithm has superior performance for high-speed motion, when the
manipulator is light-weight. However, the drawback of the signal synthesis method
which may cause saturation of the control torque will be discussed in the next
chapter. It will be shown that problems caused by such drawback can be eliminated

by choosing a proper input matrix in the control algorithm.
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Definition of Stability -

b+ T
Definition of Asymptotic Stability

Figure 4.1 Definition of stability.
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CHAPTER V

CONTROL IMPLEMENTATION
AND EXPERIMENTAL INVESTIGATION

In th¢ previous chapters, the dynamic model of motion for flexible arms has
been obtained by the recursive method and the control algorithm implemented here
has been proven to be theoretically feasible. ﬁ;;a;«;oﬁlputer'Sifnulations and
physical experiments should be carried out to test the théoretical work. A computer-
controlled prototype of a two link manipulator, RALF (Robotic Arm, Large and
Flexible) driven by hydraulic cylinders is used to perform this verification. The

experimental results show promise for the adaptive control algorithm.

5.1 Experimental Apparatus

To establish a point of reference for the following works and to set the phys-
ical scale of the experiment, the experimental facilities need to be described and -

illustrated. Chapter III has introduced the mechanical components of RALF. -This 7

sectipp will specify mea.surem{mt sensors, signal conditioning, and the computer
system and its interface involved in the control experiment. Figure 5.1 shows the
block diagram of the control implementation and software program, which is indi-
cated in the dashed line. Figure 5.2 is the flow chart of the plot used to execute the
computation of the controller.

A Micro Vax Il running the VMS operating system is used to provide high-speed
calculation during real-time control. The data acquisition and control signals use the
analog to digital (A/D)r and digital to analog (D/A) boards with 12-bit resolution.

The control program is written in Fortran. It results in sampling and calculation
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time of 7 ms. When the adaptive control algorithm is applied, computation time
is increased by approximately 1 ms to a total of 8 ms. However, this sampling rate
is feasible to control the RALF since the bandwidth of both hydraulic actuators
is above 45 Hz and the lowest two frequencies of the RALF are 5.69 Hz and 9.12
Hz, while the higher mode frequencies are hardly measurable. The actuating link’s
slowest response is about 30 Hz, which cannot be controlled.

The measurement of the piston position is used for feedback instead of the joint
angle. A linear variable differential transformer (LVDT) is the transducer. Because
the LVDT is located at the same position as the actuator, the non-collocation prob-
lem existing in the feedback control of flexible structures may be avoided [Balas].
However, the transducer mounted at the joint reflects the flexible motion, while
the LVDT does not reflect the flexibility of the link. Figure 5.3 shows the time
responses of t-he angular tl:ansducer and the LVDT of both links.

Strain gages mounted near the base and midpoint of each link provide mea-
surements of the link deﬂéctions. The relationship between strain gage and link
deflection has been described in Chapter III. Bridge circuitry and amplification are
used to augument the strain signal. The servo valve of the hydraulic actuator is
driven by a power amplifier based on the voltage signal.

In this experiment, only the equivalent joint angle that is calculated from LVDT
reading (Appendix 4) and the link strain are measured (Appendix 5). However, the
control design applied here requires that all states be available; i.e., the joint angular
velocity and the strain rate must be obtained. The estimator technique, however,
may not easily be implemented due to the characteristic of the controller and the
dynamical uncertainty. A low-pass digital filter is utilized as a pre-filter in the
control program such that all feedback signals are not subject to sudden changes.

Therefore, the difference of the angular position and the strain directly give their



102

rates. The low-pass digital filter design technique implemented here is such that an
ideal low-pass filter in the s-plane with a cut-off frequency 0.3 is mapped to the
z-plane by means of the bilinear transformation [Oppenheim]. A third order filter

is used in this experiment and described as follows:

0.12460 (s + 1.3040)

(0.6498s + 0.2448) (s2 + 0.2521s + 0.4313) ° (5.1)

H(s) =

A phase lag results, but it is small compared to the dominant frequencies of the
RALF such that the feedback signals of all states are not wrapped and applicable

to control the system.

5.2 Computer Simulation

A computer simulation has been conducted to evaluate the performance of the
control schemes developed in the last chapter, which include joint PD feedback,
decentrali-zed control (with strain feedback) and adaptive control (also decentral-
ized, with strain feedback). The detailed dimensions of flexible manipulators have
been descx.'ibed in Chapter III. A one-link flexible manipulator which is considered a
“quasi-linear” case has been studied by many workers so that it will not be discussed
in this thesis. The control of RALF which represents a multi-link flexible manip-
ulator operating in the gravitational field should lead to more contribution from
the practical and theoretical points of view. Since the bandwidth of the hydraulic
actuator is much higher than the first two frequencies of RALF, the dynamics of
the actuator is assumed to be a constant. To compare the analysis with the ex-
periment, time responses are simulated with payloads of 0 lb and 30 lb, while one
flexible mode on each link is assumed. The controller design is carried out assuming
no payload on the end and the configuration of the RALF at “home” position; i.e.,
the first joint of 35° and the second joint of 109°. Without modification of the

controller and by adding a 30 b payload to the configuration, one can illustrate the
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robustness of the feedback system through the simulation.

Different sets of simulations have been carried out with point-to-point and
trajectory tracking control of joints. The Runge-Kutta method using sampling
time of 0.1 ms is utilized to solve the nonlinear dynamics. First, the control gains
are derived from the LQR (Linear Quadratic Regulator) technique with a prescribed
degree of stability () for the linearized dynamics. From the experimental results
of Chapter III, the constants for the first and the second actuators are 5238 and
3374 respectively. In order to reduce the joint angular errors, the weighting matrix
is selected to be diag [ 1E11, 1, 1E11, 1, ..., 1 ] and the joint torque penalty matrix
is an identity matrix of order 2. Therefgre, the gains associated with the joint

positions and velocities turn out to be the joint PD controller as follows:

2.8161ET 0.
Ky = ( 0. 3.0015E7) ’ (5-2)
_ (28031E5 0. |
Kp= ( 0. 7.7616E4) ’ (5.26)

The decentralized controller given in (4.24) is then obtained as
K, =(—-2.8161E7 -1.3518F4 —2.8031E5 —1.1384E3), (5.3)

and

Ka.2 = (—3.0015E7 —1.0065E4 —7.7616E4 —268.2405) . (5.4)

Equation (4.14) needs to be satisfied in deriving b; such that 371 is here chosen as

the inertia matrix with the interconnecting terms of zero. Therefore, b; and b; are

0.

0.

0.002 ’
—0.2589

b1 = (5.50)
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and
0.
b= | O (5.50)
271 0.0373 '
—5.2673
By equation (4.22), the reference model is
o 0 10
0 0 0 1
Am1 = —6.6489F4 29.2705 -573.9691 —2.3310 |’ (5.6)
8.4057TE6 —6.0265E3 T7.2562E4 294.6916
and :
0 0 1 0
A, = 0 0 0 1 (5.7)

—1.1877E6  151.1719 —2.8961E3 -—10.0089
1.6765E8 —2.8189FE4 4.0883E5 1.4128FE3

Substituting the above into (4.23) with L; = diag[1E9, 1E4, 1, 1], the Lyapunov
equation gives

1.7177 0.0084 0.0111 0.0001

0.0084 0.0001 0. 0.
Pi=1o0111 o o000 o |*VET (5.8)
0.0001 0. 0. o
and
2.0435 0.0143 0.0069 0.
p, [ 00143 Qo001 0. 0 oo (59

0.0069 0. 0.0003 0.
0. 0. 0. 0.

The value of p; in (4.25), which is determined by (4.28), is here set to be 3.0E5 from
the engineering viewpoint; and the value of §; is then 2.0. For the decentralized
adaptive coﬁtroller, Si, is chosen to be 3.33E-3, while a; is siﬁpiy set to zero.

The various simulation conditions are outlined in Table 5.1. First, the end point
of each link is moved about 8.5 inches in 0.4 seconds for joint point-to-point control.
Figures 5.4a and 5.4b show the typical position and velocity profiles of the reference
joint angle. Without payload, time responses are illustrated for three different

controllers (PD, Decentralized and Adaptive) in Figures 5.5a-d. It is noticed in
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Fig. 5.6a-d that the system with payload has lower vibrational frequency on the
upper and lower links. Obviously, the decentralized adaptive control results in the
best performance in joint position tracking as well as link flexibility, while the joint
PD control expresses the stability of the feedback system. Figures 5.6a-d show the
results of each state for the case of a 30 1b payload but using the same controllers
as in Fig. 5.5. The state responses of the decentralized control are convergent, but
worse than those of the case of no payload due to nonadaptive ac‘tion. Therefore,
it is noted that all of the three controllers demonstrate the robustness with the
addition of the payload.

For alonger travel, the reference joint position and velocity are shown in Figures
5.7a-b. The tip ends of both the lower and the upper links are moved approximately
24.3 inches in 1 second. Therefore, the nonlinear effect and the inertia variation have
more impact on the dynamical system. But the joint angle change is still small.
Figures 5.8a-d show the time responses of the feedback system with no payload,
while Figures 5.9a-d show those of the system with 30 Ib payload. Note that better
tracking and fast vibration-setting time of each link still occur with adaptation but
that the link oscillations damp out slowly for the joint PD and the decentralized
controls when the system has the payload on the tip. Some variations between
experiment and simulation are expected since some vibrational energy is absorbed
by the hydraulic actuators but not included in the simulation model.

For the tracking control of a joint trajectory, the reference signal for both
joints is a sinusoid with the magnitude of 0.0167 radian and the frequency of 3
Hz, which is close to the first structural frequency of the system with payload.
Error responses for both joints with and without payload are as shown in Figure
5.10. Time responses of the strain without and with payload are demonstrated in

Figures 5.11a-b and Figures 5.12a-b respectively. The joint PD controller results in
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the least accuracy in the path tracking of each joint and the greatest amplitude in
the oscillation of each link among three controllers applied here. The decentralized

adaptive control shows its adjustability to different conditions.

5.3 Experiments

In order to verify the effectiveness of control schemes implemented on flexible
manlpulators several tests which are roughly para.llel to the simulations have been
carried out. The experimental condmons are outlined in Table 5.2. The control
program has been discussed in Section 5.1. The values of the joint angle are con-
verted from the measurements of the LVDT instead of the n01sy signals measured
directly from the _]omt Due to the dlmenswn of the hydrauhc actuators and size
of the va.lves, the speed of the manipulator will have some limit before saturating
the actuators. This results in comparatlvely small oscxllanons on each link so that
only one strain gage needs to be used in the experiments. However, the A/D range
is +£10 Volts and may saturate on the strain signal with a constant saturation value
substituteé,,fgx the true one. The Vourtrputs from the reference model a.rve off-line
calculated and stored in computer memory. If the reference model has stability of
a high degree, the reference ourtptrxts can be substituted by the statesrof the tracked
path without increasing real-time computation. Again, the actuator is treated here
as a constant 51gna.1 -gain from the practlca.l point of view.

The first s;t ;f plots (Flgures 5. 13a b) show time responses of the strain from
the lower link without and with the decentralized control, when an impulse force
sudrderrllj:rr}mshesi’;ilelrorwerr link. Tlrlestrra.iri' respdnses of both links are then shown
in Figures 5.14 and 5.15 for a step reference input to each joint. Obviously, t};e link
oscillations Vélainrp”eut slewly if the systemwdoes not have strain feedback; i.e., the

joint PD control. Figures 5.16a,b show the control inputs to the actuators.
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Figures 5.17a,b demonstrates the pistons of both actuators moved one inch in
0.4 seconds. The case of the decentralized control with no adaptation is excluded
in this experiment. Figures 5.18a,b and 5.19a,b show the results from strain gages
with the joint PD control and the decentralized adaptive control respectively. Note
that no payload is added to the manipulator. Figures 5.20-5.22 are for the case of
the pistons being moved 3 inches in 1 second. In the decentralized adaptive control,
the overshoot occurs when traveling longer distances, while the steady-state errors
are reduced. It is noted that the gravitational effect provides the partial reason for
the steady-state error in the joint PD control.

With 30 1b payload, two cases of motion described above have been executed.
The plots of the resulting responses a.fe given in Figures 5.23-5.28. The decentralized
adaptive control always provides more accuracy on the joint tracking and much
faster vibration-setting time, although the overshoot may appear on the end point of
travel due to the different adaptive gain implemented. From these experiments, one
can also conclude that the adaptive control is robust and self-adjustable so that it is
insensitive to variations in the payload. Figures 5.29a-d show the strain responses
from both links, when the manipulator moves several points in the workspace.

Figures 5.30a-d, and 5.31a-d illustrate the responses of the strains when the
manipulator is controlled by the joint PD and when the decentralized adaptive
scheme is utilized to follow a sinusoidal reference actuator position of 0.3 inches and
3.33 Hz. Note that frequencies other than 3.33Hz appears in the strain response of

the upper link if the system is controlled by the joint PD scheme.

5.4 Summary

The work done in this chapter emphasizes verification of the control algorithms

developed for the RALF by simulation and experiments. The experimental facility



108

has been introduced taking into account its equivalently mathematical value and
restriction. Several cases have been studied to compare the results. Conditions
similar to the experiments are imposed in simulations of the feedback system.

The results from simulation, which are based on the theoretical work, are com-
pared with the experiments to illustrate agreement, while the cases of point-to-point
and trajectory tracking are common in robot controls. Due to transducer limita-
tions, the piston motion responses in the experiments need to be converted into the
corresponding joint angle responses in the simulations. The conversion between the
LVDT and the joint angle is shown in Appendix 4 and the strain calibration from
the measurement voltage is found in Appendix 5 [Huggins|. However, the fact that
the simplified model used in the simulation may cause small deviation from the
measured experimental data is expected and acceptable from the engineering point
of view.

By applying positive gains on individual joint position and velocity feedbacks,
the system is shown to be stable. This agrees with the theoretical conclusion. The
decentralized algorithm results in much improvement. To achieve insensitivity to
variations of the payload and to large motion, the adaptive scheme of control is
superior. Therefore, the fact that the interconnected action between subsystems is

bounded and comparatively small also agrees with assumptions made in this work.
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Table 5.1 Table of simulation conditions considered.

Move the end-point of each link 8.5 inches in 0.4 sec.

Figures 5.4a-5.4b - - - Reference profiles
Figures 5.5a-5.5d - - Without payload -
Figures 5.6a-5.6d --- With payload

Move the end-point of each link 24.3 inches in 1 sec.

Figures 5.7a-5.7b - - - Reference profiles
Figures 5.8a-5.8b : .- Without payload
Figures 5.9a-5.9b - .- With payload

Track a sinusoid of a 0.0167 radian amplitude with 3Hz frequency.

Figures 5.10a-5.10d - - - Error responses
Figures 5.11a-5.11b - - - Strain responses (without payload)

Figures 5.12a-5.12b - - - Strain responses (with payload)
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Table 5.2 Table of experimental conditions considered.

Impulse excitation.

Figure 5.13a - .- Without control
Figure 5.13b ... With control

- Step responses.

Figure 5.14 - -- Lower link
Figure 5.15 --- Upper link
Figures 5.16a-b --- Control inputs

Move the rod of the actuator 1 inch in 0.4 sec.
Figures 5.17a-5.19b .- Without payload
Figures 5.23a-5.25b - .- With payload

Move the rod of the actuator 3 inches in 1 sec.
Figures 5.20a-5.22b - - - Without payload
Figures 5.26a-5.28b - .- With payload

Move multiple points in the workspace.

Figures 5.29a-d

Track a sinusoid of 3.33 Hz frequency.

Figures 5.30a-d --- Without payload
Figures 5.31a-d --- With payload
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CHAPTER VI
CONCLUSIONS AND RECOMMENDATIONS

The principal contributions of this thesis consist of two areas. One is that the
recursivc.e dynamic model has been derived by the Lagrangian-Euler formula with
assumed mode method, which tremendously reduces calculation time and errors
during the computation process. Especially, due to the recursive nature, the math-
ematically symbolic program (e.g. Macysma, SMP) is easily implemented to model
multi-link manipulators. The other is that a modern control strategy has been de-
veloped for tracking a desired trajectory over a wide range of flexible manipulator
motion and payload variation. This controller compensates the interactive forces
between links and damps out flexible oscillations. The experimental results demon-
strate agreement with the theoretical work, while the feedback system has been
proven stable. However, several requirements are necessary for the derivation of
the system dynamics and controls. This chapter provides the final conclusions and

gives recommendations to further research studies.

6.1 Conclusions
Dynamic Modeling - Kinematics of the rotary joint motion and the link de-
formation, which are described by 4 x 4 transformation matrices in the flexible
manipulators, is an efficient, complete and conceptually straight forward modeling
approach. The deflection transformation is represented in terms of a summation
of time-dependent amplitudes and mode shapes. Due to the recursive nature of
the transformation chain, the Lagrangian formulation of the dynamics is derived

as efficiently as that has been done in the rigid-link case. The inertia matrix is
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shown to be positive and symmetric and a condition of skew-symmetry exists in
the equations of motion that is useful in Lyapunov stability proofs. The equations,
which represent the dynamical state, are free from assumptions of a nominal mo-
tion, and do not ignore the interation of angular rates and deflections. However, the
link deflection is assumed to be small compared to joint motion and only rotational
joints are allowed. It is worth mentioning that there exists a stiffness term in the
equations of motion, which is not present in the case of rigid-link manipulators.
The system frequency deduced from the analytical formulation is highly de-
pendent on the mode shapes of the link deflection, while the mode shapes deter-
mined by boundary conditions are illustrated in the experiment. The application
of feedback control to the flexible manipulators also impacts the resultant flexible
vibration modes. With the correct dynamical equation obtained in symbolic form,
the choice of reasonable modes will result in the correct prediction of dynamic re-
sponse. In the case of a one-link flexible manipulator, clamped-mass modes are
selected mode shapes under the control action, while the manipulator may have
pinned-mass modes without any feedback control. RALF provides a more thorough
and complicated case to show verification of the analysis. The dynamics of the ac-
tuator needs to be considered if the bandwidth of the actuator is not large enough
to be ignored; i.e., the dynamics of the actuator with low bandwidth contributes
to the boundary conditions. To eliminate the constraint force effect, the parallel-
driving link can be simplified as an equivalent spring and the kinematic constraints
enforced through a modification of one matrix of the serial chain of transformation
matrices. Therefore, the finite element method is used to derive the desired modes
without restriction on the geometric shape and conditions. With the experimental
results and the numerical results, frequency and time responses show reasonable

agreement. The comparison, nevertheless, is furnished with small motion, while
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equations of motion are assumed to be consistent with large motion.

Control Algorithm - The dynaﬁﬁcs 7e”quation which has been derived from flex-
ible manipulators is considered as a large-scale system compared to rigid-link ma-
nipulatqrs, since the link deflection is modeled as a linear combination of shapes
with time-dependent amplitudes. Therefore, the practical controller should have
the capability to compensate for interaction forces, stabilize oscillations during the
feedback process, and then travel a pre-defined trajectory precisely. The signal-
synthesis adaptation implemented here results in a robustly stable design which
reduces the burden of real-time computation and satisfies the characteristics of the
flexibility. The Lyapunov function is implemented here to demonstrate the stability
of the controlled system.

The flexible manipulator system with an independent PD joint feedback has
been proven stable. Each link is then treated as a subsystem of the overall system.
A decentralized scheme is therefore imposed to determine the control structure
which deals with inputs and outputs in the same subsystem, while the interation
between subsystems is included within the uncertainty of the system. A nonlinear
controller is designed to take care of the uncertainties. In order to improve the
speed of convergence to the desired state, an auxiliary integral action is introduced.
However, it is necessary that all states be available in this controller design.

To confirm the theoretical system, RALF has been chosen as the test case.
In the numerical simulations, a spring constant substitutes for the hydraulic ac-
tuator. The system is assumed to be noise-free, but the gravitational effects are
considered. The joint PD controller makes the system stable but oscillations of the
link occur and then are damped out eventually. The decentralized adaptive con-
troller gives better results on the variation of payload and alternative travels. In the

experiments, time responses show compatibility with the theoretical analysis and
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simulations. The differential values of measurements are used as the angular and
the strain rates that are not accessible in this case. A low-pass filter is, therefore,
added to smooth the signal. The system with an adaptive action obviously demon-
strates faster oscillation-setting time and smaller steady-state error than without
that, although the overshoot happens in the response. The deviation between the
experiments and simulations should be tolerable due to implementing the simpli-
fied system. Conditions which are assumed to be bounded and comparatively small
on the interconnected terms between subsystems do not conflict with the physical

system.

6.2 Recommendations
Dynamic Modeling - The position of any point along the link with respect

to the origin can be obtained by transformation matrices; and then the velocity
term is obtained when the kinetic and potential energies are established to derive
the equations of motion using the Lagrangian method. An alternative method
called the Newton-Euler Formulation, which is based on the Newton’s Second Law
of Motion, can be used to find the dynamics of flexible manipulators, but it is a
complicated algorithm due to the effect of link deflection. The Kane’s method may,
however, be expedient for acquiring the dynamics, with new coordinate based on
velocity in terms of position chosen to describe the system.

The assumed-mode technique is utilized to describe the link deflection in this
work. The more modes the system has, the more accurate the dynamics is. How-
ever, this will increase the dimension of the dynamical equation and make numerical
calculation complex. The experimental method may be the best way to determine
the number of modes to be implemented. On the other hand, it is possible that

alternative methods can be used to provide close approximations of the physical sys-
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tem. However, the viscoelastic character of flexible manipulators cannot be modeled
by the assumed-mode method due to difficulty in the formulation of dynamics.

In fact, the location of the actuator needs to be taken more carefully in flexible
manipulatbrs tﬂan in rigid-link ones. Because the boundary conditions can be
affected by the actuators, mode shapes composed of the link deflection are deduced
from those conditions. The finite element method is therefore suggested to be an
numerical tool to obtain the corrrérct modes. In the case of RALF, simulations and
controls in this work have been obtained with the simplified equation of motion,
which has equivalent stiffness on the parallel link but excludes its dynamics. The
accuracy of dynamical prediction should be improved by adding the dynamics of
the parallel link. However, it may increase difficulty in dynamical modeling and
control, since there exist geometric and force constraints between the upper and
the parallel Links. L o
| Controrlrs!; A simple and 1ess EtiAx;lechonsuming ééﬁtx%:ller has proven to be robust
and stable in the analysis and ?9,,,1),6, feasibié inwt.her g;pre{in?ents. The full states
which are available, and not necesarily measured, are the essential condition. By
the theory of the Lyapunov function, the positive system can be achieved by adding
ai.rarynamic filter to rheésured outpﬁts, andﬁ thén fhe filter outpﬁt becorﬁes a feedback
signal. The differential states which are implemented in this experiment, e.g., the
strain rate, can be abandoned due to the noisy value. An alternative is to design an
observer to estimate the unmeasured state. Moreover, a matrix § which need satisfy
(4.14) does not mean a fixed constant, but may be changed when manipulators move
to a different position. Therefore, awsrea.rch in deciding f is suggested in the future.
The value of p; in (4.28) needs to be specified and the prescribed positive constant
§; in (4.25) should have more than one value.

Because mode shapes in flexible manipulators are strongly influenced by feed-
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back controls, different motions and working conditions, the character of dynamic
responses is not uniform so that the controller should be time-varying. For future
work, new control techniques such as the auto-tuning and learning control perhaps
provide better approaches to improve the system performance, although the results
of the controlled system developed in this thesis have been outstanding.

From the experimental result, the reference command is also one of the fac-
tors affecting the system vibration. The smoother reference trajectory is, the less
oscillation occurs. This is used to select the desired trajectory, especially when
oscillation is not allowed in certain working condition. If the end point of flexible
manipulators travels along a pre-defined path and the link oscillation is not con-
cerned, the output measurements may require the end point sensor instead of strain
gages as implemented here. The two measurement methods are not in conflict, but
are complimentary. The property of observability exists in both cases.

In the case of RALF, the hydraulic actuator designed to derive the system has
much higher stiffness than electric drives. This leads to higher loop gain ca.pébil-
ity, greater accuracy, and better frequency response. Also, the hydraulic actuator
gives smoother preformance at lorwv rspeeds and is direct-coupled to the load without
the requirement for intermediate gearing. However, the hydraulic system is highly
nonlinear and increases complexity in analysis. Electric motor drives may be more

appropriate from the experimental point of view.
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Appendix 1 : Dynamic Description for Equation of Motion

) (§) (1) -+ (1) ¢

LPRLPRE
M(G,S) = MZZ M23
-(sym) ' M33 ]
where ) ,
My = Jo + Meﬂ + Io + Mewleal + ¢2e52)
2
Mpp = Ml + | X &) dn
¢
Mg = M 28, + Jo ¥ ¢, dm

2 ,2
M22 =m + Me d’le + JP¢le

M23 = Me¢1e¢2e + JP¢le¢Ze

2 ,2
M33 =m+ M¢2e + Jp¢ze

F o= 2M (8,5, +6,9,)(8, 8 +4,5,)0

2e 2

2. 2 ‘2
-Me.o ¢1e 61 - Mea _¢le 6. &
2 2 2
Ml 01682651 " Me? 95 6

f2-

2



4. |

168 =
L
-
.
0 0 0 =
- 0 -
K 0 K11 ]
0 0 Ky =
=
where X B
. -
- [ dX
Ky = € Jo (¢} (x)]
§
£
2
K,, = EI [¢.(x)] dx —
22 Jo "2 —
Note:
Jo: Motor rotor inertia
Me: End point mass
. End point inertia of mass -
m Link mass —
IO: Link inertia of mass -
2: Link Tength
100 9508 }
807 #,(8) , -
-
=
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Appendix 2 : Hydraulic Components

HYDRAULIC COMPONENTS

{

Power Unit

Size: 25 hp., 230 volts. 60.3 amps. 1735 om
Pump: Vickers Variable Volume Piston Pump - 20 gpm
Model: F3-PVB20-FRS-20-C-11
Company: Parker Hannifin Corp.
Aurora, NY
Valves ]
Modet: =2.102A Two Stage Servovalves - 5 2pm {2
Serial Nos.: 147, 133
Company: Moog, Inc.
East Aurora, NY
Cylinders
Y Model: N2C - 3.25 x 40 Cylinder
Serial No.: 5C8205-063-1B
Bore: 3.25 in.
Stroke: 40 in. (modified to 17 in.)
Seals: Buna-N
Rod Diameter: 1.75 in.
Piston Diameter: 3.25 1.
Weight: 52 1bs.
Company: Hydroline Mig. Co.
Rockford, IL
Model: H-PB-2 Cylinder
Serial No.: 37TTR1-J
Bore: 2 in.
Stroke: 20 in.
Seals: Teflon
Rod Diameter: 1.00 in.
Weight: 35 lbs.
Company: Atlas Cylinder Corp.

Delco Electric Motor

Eugene, OR
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Appendix 3 : Case Study of Decentralized System

In the following, a case study is performed for the first step to design the
decentralized control system, which is applied to the two-link rigid robotic arms.
Dimension of the robot structure is the samé z;.s that of the RALF, but the link
flexibility is excluded in the equations of motion [Yuan and Book 1988]."

To simplify the analysis, the cylindrical sleeves at the connection of the lower
link and the upper link are modeled as concentrated masses. In SI units, the lower
and the upper links are m; (=12kg) and m; (=13kg), while the point vmasses at
each end of the links are m, (=30kgj and m, (=20kg). This system is assumed to

have motion in the vertical plane. .

The equations of motion are as follows:
My Mi2 6, h1 g11 ) (7-1 ) -
4 = , A3.1
(mzl mzz) (02) +(h21)+(921 g T2 ( )

my; = mll‘f/3 + mgl;’/3 + (mg + me + my ) + m 2 + (mg + 2m, )11 cos b,

where

maz = mal2/® + myl2 + (1/2mg + my)hl; cos by ,

ma1 = maly/® + muld + (1/2m; + my)lil; cos b,

m22 - mzl§/3 + myi3, |

har = 1/2(m; + my)11262 sin 0, + (2my + m3)l112610; sin 6,

har = (1/2my + my )L 1267,

g1 = (1/2my + my + m, + my)l; cos 0y + (1/2my + my,)l; cos(8; + 6;),

g21 = (1/2mg 4+ my)lz cos(81 + 63).
6; and 6, are joint angles; 7; and 7, are tox;crluerforces. Using symbolic terms to
represent (A3.1): |

M(6)6+ H(8,6)+ G =T, (A3.2)
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The inertia matrix M has eigenvalues between 37.6 and 1805.4. Therefore, 3
and B; (B = diag[B1 B2] ) are chosen as 0.001 satisfying the inequality(4.14). Then,

(A3.2) can be rewritten as:
§=-M1H+G+BT+ M -4|T, (A3.3)

Now, one can consider each joint j as a subsystem of the overall system (A3.3).
Defining state variable X7 = [6; 6;] and a control input 7; = u;, equation (A3.3)
is divided into two equations for two interconnected subsystems (note: i = 1,2).

Each subsystem is described by a first order differential equation of the form:
X,' = A; X; + bju; + F,(X) + f,-(X)u,- . (A3.4)

where

i=1,2

xXT=[xTxT)
4= (0 o)
- (8)

Fi(X) are the coupling terms of —M ™! [H + G] for subsystem i and fi(X) are the
coupling terms of (M~ — 3) for subsystem 1.
F;(X) and fi(X) are assumed to be bounded, are modeled as system uncer-

tainties and have the properties:
Fi(X) € Fi(X,0) = b: Di(X, 0)

F(X) ¥ £i(X,0) = b Ei(X,0), (A3.5)
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where o € RP represents the system uncertainty and is continuous on RP as well as

- the uncertainty bounding set. Also, || E;|| < 1 is from (4.14).

Therefore, the overall system takes the following matrix form

X =AX + BU + BD + BE, (A3.6)
where for i = 1,2, - ”
A = diag (4:),
B = diag(d:),
D = diag(Dy),
E = diag (E;),
UT = [u; ug].

The decentralized control algorithm, which is described in Chapter IV, can be
applied to the above equation (A3.4 or A3.6) without exception. First, choose a

stable reference model,

Xomi = AmiXmi + bmiTi (A3.70)

and let
bmiKzi = Ami — Ay, (A3.7b)
bKy; = by« (A3.7¢)

Given a positive definite and symmetric matrix L;, a matrix P; can be obtained by

satisfying the Lyapunov equation,
AT P+ PiA,: =—L;. (A3.8)
Therefore, the input control u; is described as
ui = Koy Xi + Kpiri + ¥i(ei), (43.9)

where e; = Xyni — X; and #; is the nonlinear control expressed as in (4.25).

I
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Appendix 4 : LVDT Calibration
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Appendix 5 : Strain Gage Calibration

STRAIN GAGE CALIBRATION

) 7“.&!

a.001 ———

¥ v
-3 -3 -3
. Valtege
S Dms o Aeyressian MR

Strain Gage Calibration, Lower Beam

STRAIN GAGE CALIBRATION

Upser Seam

i

§

‘
&

S -

Versee
[+ Sewm — Regreamen

Strain Gage Calibration, Upper Beam OR:GINAL FAGE IS
OF POOR QUALITY

mr W

I

8l |

T 1w 1 0

mill |



-

Appendix 6 : Block Diagram of the Decentralized Adaptive Control
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